YASKAWA

YASKAWA AC Drive High Performance Vector Control A1000

200 V CLASS, 0.4 to 110 kW
400 V CLASS, 0.4 to 630 kW

The Birth of Yaskawa's Ace Drive

Offering limitless possibilities....

A top quality drive: silent, beautiful, and incredibly powerful. Perfectly designed functions open a new field with A1000. A product only possible from Yaskawa, knowing everything there is to know about the world of drive technology to create the most efficient operation possible with an inverter drive. You just have to try it to know how easy it is to use. High level, Yaskawa quality. Integrating the latest vector control technology in a general-purpose drive with the performance of a higher order demanded by the drives industry.
A1000 is the answer to user needs, carrying on the Yaskawa traditions of absolute quality in this next generation product line.

Contents

The Drive for a Greener World

Motor Drive Performance

 Leading the Pack\therefore Transforming the Application Installation with Unparalleled Performance,

Motop Drfve Performance Geading the Pack

The Most Advanced Drive Technology

\triangle Capable of driving any kind of motor.

A1000 runs not only induction motors, but also synchronous motors like IPM and SPM motors with high performance current vector control.

Minimize equipment needed for your business by using the same drive to run induction and synchronous motors.

T Switch easily between motor types with a single parameter setting.

Rotor Positioning without Motor Encoder

\square Use an IPM motor to perform position control without motor feedback.
Electrical saliency in IPM motors makes it possible to detect speed, direction, and rotor position without the use of a motor encoder.

- Precision positioning functionality without an upper controller.
Visual programming in DriveWorksEZ lets the user easily create a customized position control sequence, without the use a motor encoder.

Note: The max. applicable motor capacity (KW) cited in this catalog indicates the capacity for the Heavy Duty (HD) rating.

Cutting-Edge Torque Characteristics

D Powerful torque at 0 Hz , without a motor encoder*
Once out of reach for AC drives, Yaskawa now offers advanced control features without a motor encoder. Achieve even more powerful starting torque at zero speed with an IPM motor.
*: No speed sensors or pole sensors required.

Synchronous Motor

- Advanced Open Loop Vector Control for PM

200\% rated torque at $0 \mathrm{r} / \mathrm{min}^{* 1}$, speed range of $1: 100^{* 2}$
Note: Valid when high frequency injection is enabled ($n 8-57=1$).

- Closed Loop Vector Control for PM 200% rated torque at $0 \mathrm{r} / \mathrm{min}^{* 1}$, speed range of 1: 1500
*1: To reach this value and the torque output shown in the graph, increase the drive and motor capacities.
*2: Contact your Yaskawa or nearest agent when using PM motors except SSR1 series or SST4 series motors manufactured by Yaskawa Motor Co., Ltd.

Torque characteristics
[Advanced Open Loop Vector Control for PM with an IPM motor]

- Comparing the speed control range
[Advanced Open Loop Vector Control for PM with an IPM motor]

High-performance current vector control achieves powerful starting torque with an induction motor.

Loaded with Auto-Tuning Features

\triangle Auto-Tuning features optimize drive parameters for operation with induction motors as well as synchronous motors to achieve the highest performance levels possible.
\triangle Perfects not only the drive and motor performance, but also automatically adjusts settings relative to the connected machinery.

- A variety of ways to automatically optimize drive settings and performance

	Applications requiring high starting torque, high speed, and high accuracy.
Rotational Auto-Tuning	Applications where the motor must remain connected to the load during the tuning process.
Stationary Auto-Tuning	For re-tuning after the cable length between the motor and drive has changed, or when motor and drive capacity ratings differ.
Line-to-Line Resistance Auto-Tuning	For running the motor at top efficiency all the time.
Energy-Saving Auto-Tuning	

	Optimizes the drive's ability to decelerate the load. Useful for applications using KEB and Feed Forward functions.
Inertia Tuning	Automatically adjusts ASR gain to better match the frequency reference.
ASR* Gain Auto-Tuning *: Automatic Speed Regulator	Load

Note: This type of Auto-Tuning is available only for motors less than 450 kW using an encoder.

© Brand-new Auto-Tuning methods.

A1000 continuously analyzes changes in motor characteristics during run for highly precise speed control.

Smooth Operation

\square Smooth low speed operation thanks to even better torque ripple suppression.

- Comparing torque ripple at zero speed (Closed Loop Vector)

Tackling Power Loss and Recovery

A1000 offers two ways to handle momentary power loss.
\A1000 is capable of handling momentary power loss for induction motors as well as synchronous motors without the use of a motor encoder.

- Speed Search

Easily find the speed of a coasting motor for a smooth restart.

Applications

Perfect for fans, blowers, and other rotating, fluid-type applications.

- KEB

Keep the motor running without allowing it to coast.
Applications
Highly recommended for film lines and other applications requiring continuous operation.

Note: Requires a separate sensor to detect power loss. The drive may trip depending on load conditions, and the motor coast to stop.
Ride through power loss for up to 2 seconds.*

- Crucial for semi-conductor manufacturers
- No need to purchase a back-up power supply
- Detects, outputs an undervoltage signal during power loss
*: The Momentary Power Loss Recovery Unit option may be required depending on the capacity of the drive.

TheDiviveror

© (ireener Worla

Energy Saving

Next-Generation Energy Saving

Loaded with the most advanced energy-saving control technology* Energy Saving control makes highly efficient operation possible with an induction motor.
*: Available for models less than 450 kW .

- Amazing energy saving with a synchronous motor* Combining the high efficiency of a synchronous motor along with A1000's Energy Saving control capabilities allows for unparalleled energy saving.
*: Available for models less than 450 kW .
- Efficiency using a motor drive

Example shows a 200 V 3.7 kW drive in a fan or pump application.

- Examples of energy saving with drives

Environmental Features

Protective Design

\triangle A variety of protective designs are available to reinforce the drive against moisture, dust, oil mist, vibration, corrosive sulfur gas, conductive particles, and other harsh environments.

RoHS

All standard products are fully compliant with the EU's RoHS directive.

RoHS

 compliant
Noise Reduction

A1000 uses Yaskawa's Swing PWM function* to suppress electromagnetic and audible motor noise, creating a more peaceful environment.
*: Available for models less than 450 kW .

- Comparing our former product line with our new Swing PWM feature
| Previous models ||A1000|

Note: Calculated by comparing peak values during noise generation
Suppressing Power Supply Harmonics
A DC reactor minimizes harmonic distortion, standard on drives 22 kW and above.

Safety

Safety Regulations

The products comply with ISO/EN13849-1 Cat. 3 PLd and IEC/EN61508 SIL2 (two safety inputs and one EDM output).

- An External Device Monitor (EDM) function has also been added to monitor the safety status of the drive.
- Safe Disable example: Door switch circuit

A1000 is equipped with 2 input terminals and a single output terminal for connecting a safe disable device.
Input: Triggered when either terminal H 1 or H 2 opens.
Output: EDM output monitors the safety status of the drive.

Controlled Stop Despite Power Loss

Should a power outage occur, A1000 can bring the application to controlled stop quickly and safely using the KEB function.

Quickly ramp to stop with KEB function

Applications

Perfect for spindle drive application and film production lines where stopping methods are crucial to the application to reduce production cost.
| Previous model |

| A1000 |

Transforming the Application finstallation with Onparalleled Performence

Even More and More Compact

Yaskawa continues to make applications even smaller by combining the world's smallest drive in its class with the light, efficient design of a synchronous motor.

- Comparing drive dimensions

Example: 400 V Class 75 kW

> \Use Side-by-Side installation* for an even more compact setup.
> *: For models up to 18.5 kW .

V Finless models* also available.

* For models 400 V class 22 to 75 kW

Customize Your Drive

D DriveWorksEZ visual programming tool with all models
Simply drag and drop icons to completely customize your drive. Create special sequences and detection functions, then load them onto the drive.

- Program a customized sequence

Example: Positioning control without a motor encoder

A1000 IPM motor

Time (s)

- Create customized detection features

Example: Machine weakening analysis using torque pulse detection

- USB for connecting to a PC

- USB port lets the drive connect to a PC

Note: Drives are also equipped with an RJ-45 comm. port that takes the existing WV103 cable used in Yaskawa's previous models. Simply remove the operator keypad for to the RJ-45 connector.

Dual Rating allows for an even more compact setup Each drive lets the user choose between Normal Duty or Heavy Duty operation. Depending on the application, A1000 can run a motor an entire frame size larger than our previous model.

- Select the drive rating that best fits the application needs

Note: Always select a drive with a current rating greater than the motor rated current.

Breeze-Easy Setup

\triangle Immediate setup with Application Presets
A1000 automatically sets parameters needed for most major applications.
Simply selecting the appropriate application instantly optimizes the drive for top performance, saving enormous time setting up for a trial run.

- Example using Application Presets

Selecting "Conveyor" optimizes five parameter settings so the drive is ready to start running your conveyor application immediately.

Setting	Application
00	General-purpose
01	Water Supply Pump
02	Conveyor
03	Exhaust Fan
04	HVAC Fan
05	Air Compressor
06	Crane (Hoist)
07	Crane (Traverse)

Variety of Braking Functions

D Overexcitation deceleration brings the motor to an immediate stop without the use of a braking resistor.
\triangle All models up to 30 kW are equipped with a braking transistor for even more powerful braking options by just adding a braking resistor.

All Major Serial Network Protocols

I RS-422/485 (MEMOBUS/Modbus (RTU mode) Communications at 115.2 kbps) standard on all models.
\triangle Option cards available for all major serial networks used across the globe: PROFIBUS-DP, DeviceNet, CC-Link, CANopen, LONWORKS, MECHATROLINK-II, MECHATROLINK-III, among others.
Note: Registered trademarks of those companies.
Tess wiring and space-saving features make for easy installation and maintenance.

Application-Specific Software

\triangle Software for cranes, and for high-frequency output applications, are available.

Long Life Performance

Ten Years of Durable Performance

Cooling fan, capacitors, relays, and IGBTs have been carefully selected and designed for a life expectancy up to ten years.*
*: Assumes the drive is running continuously for 24 hours a day at 80% load with an ambient temperature of $40^{\circ} \mathrm{C}$ with an IPOO open-chassis enclosure.

Motor Life

Thanks to relatively low copper loss in the rotor and a cool shaft during operation, synchronous motors have a bearing life twice that of induction motors.

Performance Life Monitors

Yaskawa's latest drive series is equipped with performance life monitors that notify the user of part wear and maintenance periods to prevent problems before they occur.

- Drive outputs a signal to the control device indicating components may need to be replaced

Easy Maintenance

The First Terminal Board with a Parameter Backup Function

I The terminal block's ability to save parameter setting data makes it a breeze to get the application back online in the event of a failure requiring drive replacement.

- A1000 Terminal Block

Parameter

Name	Number	Setting
ND/HD Selection	C6-01	1
Control Mode Selection 1	A1-02	0
Frequancy PRérereceSeSection 1	b1-01	1
Run Command Selection 1	b1-02	1

Engineering Tool DriveWizard Plus

Manage the unique settings for all your drives right on your PC.

An indispensable tool for drive setup and maintenance. Edit parameters, access all monitors, create customized operation sequences, and observe drive performance with the oscilloscope function.

The Drive Replacement feature in DriveWizard Plus saves valuable time during equipment replacement and application upgrades by converting previous Yaskawa product parameter values to the new A1000 parameters automatically.

- Drive Replacement Function

Parameter Copy Function

All standard models are equipped with a Parameter Copy function using the keypad that allows parameter settings to be easily copied from the drive or uploaded for quick setup.
\triangle A USB Copy Unit is also available as an even faster, more convenient way to back up settings and instantly program the drive.

Features for Every Application

A1000 is loaded with functions to match the particular needs of every application.

Cranes

Advantages

1 Application Presets
Selecting "Crane" from A1000's Application Presets automatically programs A1000 for optimal performance with a crane application. Save valuable setup time and start running immediately.

2 Switch Between Motors

Use the same drive to control one motor for hoisting, another motor for traverse operation. Terminal inputs let the user set up a relay to switch back and forth between motors.

3 Powerful Starting Torque

Powerful torque at low speeds ensures the power needed for the application and prevents problems with slipping.

4 Safety Functions

The Safe Disable function comes standard for compliance with various safety regulations.

5 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

6 Performance Life Diagnostic Features
A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

7 Terminal Block with Parameter Backup Function
The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

Functions

Applications

Hoist, Crane

Fans and Pumps

1 Application Presets

Selecting "Fan" or "Pump" from A1000's Application Presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.

2 Compact Design

Yaskawa offers a compact solution for both drive and motor.

- Dual ratings

Selecting Normal Duty makes it possible to use a smaller drive.

- Combine with a synchronous motor

Run a synchronous motor instead of an induction motor for an even more compact installation.

3 Astounding Efficiency

 Combine A1000 with a synchronous motor and save on energy costs.4 Output Power Pulse Monitor
Pulse output feature can send a signal to the PLC to keep track of kilowatt hours. No extra power meter needed.

Note: Cannot legally be used as proof of power consumption.
5 Speed Search
Yaskawa's unique speed search functions easily carry the motor through momentary power loss. No back-up power supply needed to keep the entire application running smoothly.
624 V Control Power Supply Option Lets the user monitor drive data from a PLC even when the power goes out.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

8 Performance Life Diagnostic Features

A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

9 Low Harmonic Distortion

DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves installation space and wiring.

$\underset{\substack{\text { New } \\ \text { Nincions }}}{\substack{\text { nen }}}$
Indicates a new function in A1000

Applications

Features for Every Application

A1000 is loaded with functions to match the particular needs of every application.

1 KEB Function

The KEB function can quickly decelerate the motor to stop in case of a power outage, rather than putting equipment at risk by simply allowing the motor to coast. Easy to program to match application needs.

2 Overvoltage Suppression
Particularly beneficial for die cushion and other press-type machinery, overvoltage suppression prevents faults and keeps the application running.

3 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

4 Safety Functions
Safe Disable feature comes standard for compliance with various safety regulations.

5 Current Vector Control

Protect connected machinery by controlling torque directly through torque detection and torque limits offered by current vector control.

6 Performance Life Diagnostic Features
A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

7 Terminal Block with Parameter Backup Function The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

Functions

Indicates a new function in A1000

Applications

Conveyor Systems

1 Application Presets

Selecting "Conveyor" from A1000's Application Presets presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.
2 Safety Functions
Safe Disable feature comes standard for compliance with various safety regulations.

3 Astounding Efficiency
 4 Overexcitation Braking

Combine A1000 with a synchronous motor to save on energy costs. Save further but still maintain high performance by eliminating the motor encoder. Bring the motor to mmediate the use of a braking sistor (IM motors only).

Note: Varies in accordance with motor specifications and load.

5 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.
624 V Control Power Supply Option Lets the user monitor drive data from a PLC even when the main power is removed.

Functions

, ind

Applications

Conveyor

7 Verify Menu
Quickly reference any settings that have been changed from their original default values.
Changed Value

Name	Parameter	Default	Set Value
Frequency Reif. Selction1	$\mathrm{b} 1-01$	1	0
Acceleration Time1	C1-01	10.00 s	15.00 s
Deceleration Time1	C1-02	10.00 s	15.00 s
\vdots	\vdots	\vdots	\vdots

-

8 Performance Life Diagnostic Features
A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

9 Low Harmonic Distortion

Motor
Capacit
Capaci
(kW)

0.4

0.75
1.1

1.5
2.2
3.0
3.7

5.5
$\begin{array}{r}7.5 \\ \hline 11 \\ \hline\end{array}$
15

18.5
22

30
37

45
55

75
90

110

*: Available in Japan only

Model Number Key

Optimizing Control for Each Application

A1000 offers two separate performance ratings: Normal Duty and Heavy Duty.
Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.
Difference between load ratings:

	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01=1	C6-01=0 (default)
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PWM)*	Low carrier frequency

*: Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency. Available for models less than 450 kW .
Normal Duty Applications

- Applications

- Selecting a Drive

For a fan application using a 11 kW motor, select CIMR-A $\square 2$ A0040 and set it for Normal Duty performance (C6-01 = 1).
Model: CIMR-A $\square 2 A 0040$

Heavy Duty Applications

- Applications

- Selecting a Drive

For a conveyor application using an 11 kW motor, select CIMR-A $\square 2 A 0056$ and set it for Heavy Duty performance (default).
Model: CIMR-A $\square 2$ A0056

Use the table below to transition from Varispeed F7 and Varispeed F7S to the A1000 series (assumes a Heavy Duty rating).

Power Supply		200 V			400 V (assumes a Heavy Duty rating)		
Model		Varispeed F7	Varispeed F7S	A1000	Varispeed F7	Varispeed F7S	A1000
		CIMR-F7A2:-	CIMR-F7S2, -	CIMR-A: 2A	CIMR-F7A4	CIMR-F7S4	CIMR-A: $4 A^{\prime}$
App	e Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor
	0.4	OP4	OP4	0004	OP4	OP4	0002
	0.75	0P7	0P7	0006	0P7	0P7	0004
	1.5	1P5	1P5	0010	1P5	1P5	0005
	2.2	2P2	2P2	0012	2 P 2	2P2	0007
	3.7	3P7	3P7	0021	3P7	3P7	0011
	5.5	5P5	5P5	0030	5P5	5P5	0018
	7.5	7P5	7P5	0040	7P5	7P5	0023
	11	011	011	0056	011	011	0031
	15	015	015	0069	015	015	0038
	18.5	018	018	0081	018	018	0044
	22	022	022	0110	022	022	0058
	30	030	030	0138	030	030	0072
	37	037	037	0169	037	037	0088
	45	045	045	0211	045	045	0103
	55	055	055	0250	055	055	0139
	75	075	075	0312	075	075	0165
	90	090	-	0360	090	090	0208
	110	110	-	0415	110	110	0250
	132	-	-	-	132	132	0296
	160	-	-	-	160	160	0362
	185	-	-	-	185	220	0414
	220	-	-	-	220	300	0515
	315	-	-	-	300	300	0675

No need to struggle with difficult parameters and complex calculations.
Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Optimal deceleration without needing to set the deceleration time. Drive slows the application smoothly controlling DC bus voltage.

Perfect for applications with high load inertia that rarely need to be stopped. Stop quickly: 50% faster without the use of a braking resistor.
Note: Stopping times may vary based on motor characteristics.

Speed Search

Dwell Function untion

Accel/Decel Time Switch

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without using a motor encoder.

Accelerate and decelerate

 smoothly with large inertia loads. Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.Switch easily between accel/decel times. Switch acceleration and deceleration rates when running two motors from the same drive, or assign specific accel/decel rates when operating at high speed or at low speed.

Functions for Top Performance

Reference Functions

Frequency
Reference Upper/Lower Limits

Frequency

Jump

Frequency Reference Hold

Limit motor speed.
Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

Skip over troublesome resonant frequencies. Drive can be programmed to avoid machine resonance problems by avoiding constant speed operation at certain speeds.

Improved operability.

Momentarily hold the operating frequency during acceleration or deceleration as the load is lowered or raised.

Balances the load automatically between motors.
 Calculates the ratio of the load torque and adjusts motor speed accordingly.

Pulse Train Output

Run both IM and PM motors with a single drive. The most advanced motor drive technology can run both IM and PM motors, allowing for even greater energy savings and a more compact setup.

No extra watt hour meter needed.
A pulse output lets the user monitor power consumption.*
*: Cannot legally be used as proof of power consumption.

Automatically runs at top efficiency.* The drive supplies voltage to the motor relative to the speed and load so that the application is for operating at the most efficient level.
*: Not available in models 450 kW and above.

Enables high-precision operation.
Automatically adjusts resistance between motor conductors during operation, thus improving speed accuracy when there are motor temperature fluctuations. This function is active only for Open Loop Vector Control.

Achieve high levels of performance. The drive comes with current vector control capabilities for high performance applications.

Customize the perfect drive to fit your needs. Upper controller circuitry and drive I/O terminals can be programmed so that extra hardware is no longer needed. Drag-and-drop. Visual programming makes customization a breeze.

Automatic PID control.

The internal PID controller fine-tunes the output frequency for precise control of pressure, flow, or other variables.

One drive runs two motors.

Use a single drive to operate two different motors. Only one PM motor may be used.

Improved operability.

Use the Pulse Train Input to control not only the frequency reference, but also PID feedback and PID input.

Improved monitor functions.
Pulse output lets the user observe everything from the frequency reference and output frequency to motor speed, softstart output frequency, PID feedback, and PID input.

Protects the load and helps

 ensure continuous operation.An output terminal is triggered when motor torque rises above or falls below a specified level. Useful as an interlock signal for protecting equipment when blade problems arise in a machine tool application or for detecting a broken belt.

Better reliability: Keep the application running while protecting the load. A1000 helps protect your application by restricting the amount of torque the motor can create.

Freely adjust torque levels with an external reference signal. Perfect for tension control in winders and assisting torque followers.

Optimizes speed changes when working with high-inertia loads. Estimates the acceleration/deceleration torque required for the change in speed, and then recalculates the torque reference.

Automatically optimize ASR settings for superior responsiveness.* Optimizes the drive's ability to decelerate the load. Useful for applications using KEB and Feed Forward functions.
*: Available for models less than 450 kW .

Automatically switches to line

 power.Switches operation between line power and inverter drive operation without stopping the motor.

No need for extra hardware.
Control timing by opening and closing the output signal relative to the input signal.

Locks the motor at zero speed. Holds the motor solidly at 0 Hz , regardless of external influences on the load.

Set the carrier frequency to best match application needs.
Reduces noise and resonance in the both the motor as well as the mechanical system. The Swing PWM feature* can be used to minimize audible motor noise. *: Available for models under 450 kW .

Keeps the application running.

Maintains continuous operation even if the controller fails or frequency reference is lost. An indispensable feature for large HVAC applications.

Keep running when a fault occurs. A1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

Protective Functions

Momentary
Power Loss Ride-Thru

Jervoltage
Suppression

Carrier
Frequency Reduction at Overload

Load Speed
 Display

Copy
 Function

Keep running even during a momentary loss in power. A1000 automatically restarts the motor and keeps the application going in the event of a power loss.

Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Avoid overload faults for nonstop operations.
Automatically lowers the carrier frequency and raise the overload capacity if the load increases and the current exceeds the drive's rated output current. This makes it possible to prevent the occurrence of overload faults.

Monitor actual speed of the motor and load.

Monitors let the user keep track of motor rotations and line speed.

Save parameter setting to the digital operator.
Copy all parameter settings to the operator keypad, and then transfer those settings to another drive. Saves valuable setup and maintenance time.

Notifies the user when

 maintenance may be required. An output signal is triggered when certain components such as the cooling fan or capacitors are nearing their expected performance life.
Decelerate to stop when the

 power goes out.A1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast.

Function	No.	Name	Range	Default	Changes during Run	Function	No.	Name	Range	Default	Changes during Run
	A1-00	Language Selection	0 to 12*4	1*1	\bigcirc	$\begin{aligned} & \overline{0} \\ & \text { 흠 } \\ & \text { O } \\ & \text { 음 } \end{aligned}$	b5-01	PID Function Setting	0 to $8^{* 4}$	0	\times
	A1-01	Access Level Selection	0 to 2	2*2	\bigcirc		b5-02	Proportional Gain Setting (P)	0.00 to 25.00	1.00	\bigcirc
	A1-02	Control Method Selection	0,1,2,3,5,6,7	2*1	\times		b5-03	Integral Time Setting (I)	0.0 to 360.0	1.0 s	\bigcirc
	A1-03	Initialize Parameters	0 to 5550	0	\times		b5-04	Integral Limit Setting	0.0 to 100.0	100.0\%	\bigcirc
	A1-04	Password	0 to 9999	0	\times		b5-05	Derivative Time (D)	0.00 to 10.00	0.00 s	\bigcirc
	A1-05	Password Setting	0 to 9999	0	\times		b5-06	PID Output Limit	0.0 to 100.0	100.0\%	\bigcirc
	A1-06	Application Preset	0 to 7	0	\times		b5-07	PID Offset Adjustment	-100.0 to +100.0	0.0\%	\bigcirc
	A1-07	DWEZ Function Selection	0 to 2	0	\times		b5-08	PID Primary Delay Time Constant	0.00 to 10.00	0.00 s	\bigcirc
	A2-01 to	User Parameters, 1 to 32	A1-00 to	*2	\times		b5-09	PID Output Level Selection	0, 1	0	\times
	A2-32		-4-13				b5-10	PID Output Gain Setting	0.00 to 25.00	1.00	$\bigcirc * 4$
	A2-33	User Parameter Automatic Selection	0, 1	1*2	\times		b5-11	PID Output Reverse Selection	0, 1	0	\times
	b1-01	Frequency Reference Selection 1	0 to 4	1	\times		b5-12	PID Feedback Loss Detection Selection	0 to 5	0	\times
	b1-02	Run Command Selection 1	0 to 3	1	\times		b5-13	PID Feedback Low Detection Level	0 to 100	0\%	\times
	b1-03	Stopping Method Selection	0 to 3*3	0	\times		b5-14	PID Feedback Low Detection Time	0.0 to 25.5	1.0 s	\times
	b1-04	Reverse Operation Selection	0, 1	0	\times		b5-15	PID Sleep Function Start Level	0.0 to 400.0	*3	\times
	b1-05	Action Selection below Minimum Output Frequency	0 to 3	0	\times		b5-16	PID Sleep Delay Time	0.0 to 25.5	0.0 s	\times
	b1-06	Digital Input Reading	0, 1	1	\times		b5-17	PID Accel/Decel Time	0 to 6000.0	0.0 s	\times
	b1-07	LOCAL/REMOTE Run Selection	0, 1	0	\times		b5-18	PID Setpoint Selection	0, 1	0	\times
	b1-08	Run Command Selection while in Programming Mode	0 to 2	0	\times		b5-19	PID Setpoint Value	0.00 to 100.00	0.00\%	$\bigcirc^{* 4}$
	b1-14	Phase Order Selection	0, 1	0	\times		b5-20	PID Setpoint Scaling	0 to 3	1	\times
	b1-15	Frequency Reference Selection 2	0 to 4	0	\times		b5-34	PID Output Lower Limit	-100.0 to +100.0	0.0\%	\bigcirc
	b1-16	Run Command Selection 2	0 to 3	0	\times		b5-35	PID Input Limit	0.0 to 1000.0	1000.0\%	\bigcirc
	b1-17	Run Command at Power Up	0, 1	0	\times		b5-36	PID Feedback High Detection Level	0 to 100	100\%	\times
	b1-21*9		0, 1	0	\times		b5-37	PID Feedback High Detection Time	0.0 to 25.5	1.0 s	\times
		Closed Loop Vector Control					b5-38	PID Setpoint User Display	1 to 60000	$\begin{array}{\|c\|} \text { dep. on } \\ \text { b5-20 } \end{array}$	\times
	b2-01	DC Injection Braking Start Frequency	0.0 to 10.0	*3	\times		b5-39	PID Setpoint Display Digits	0 to 3		\times
	b2-02*4	DC Injection Braking Current	0 to 100	50\%	\times		b5-40	Frequency Reference Monitor Content during PID	0, 1	0	\times
	b2-03*4	DC Injection Braking Time at Start	0.00 to 10.00	0.00 s	\times		b5-47	Reverse Operation Selection 2 by PID Output	0, 1	1	\times
	b2-04*4	DC Injection Braking Time at Stop	0.00 to 10.00	*3	\times	$\begin{aligned} & \text { 을 } \\ & \text { 을 } \\ & \text { 를 } \\ & \hline \stackrel{y y y}{0} \end{aligned}$	b6-01	Dwell Reference at Start	0.0 to 400.0	*3	\times
	b2-08	Magnetic Flux Compensation Capacity	0 to 1000	0\%	\times		b6-02	Dwell Time at Start	0.0 to 10.0	0.0 s	\times
	b2-12	Short Circuit Brake Time at Start	0.00 to 25.50	0.00 s	\times		b6-03	Dwell Frequency at Stop	0.0 to 400.0	*3	\times
	b2-13	Short Circuit Brake Time at Stop	0.00 to 25.50	0.50 s	\times		b6-04	Dwell Time at Stop	0.0 to 10.0	0.0 s	\times
	b2-18	Short Circuit Braking Current	0.0 to 200.0	100.0\%	\times		b7-01	Droop Control Gain	0.0 to 100.0	0.0\%	\bigcirc
	b3-01	Speed Search Selection at Start	0, 1	*3	\times		b7-02	Droop Control Delay Time	0.03 to 2.00	0.05 s	\bigcirc
	b3-02	Speed Search Deactivation Current	0 to 200	*3	\times		b7-03	Droop Control Limit Selection	0, 1	1	\times
	b3-03	Speed Search Deceleration Time	0.1 to 10.0	2.0 s	\times	ய	b8-01	Energy Saving Control Selection	0, 1	*3	\times
	b3-04*4	V/f Gain during Speed Search	10 to 100	* 4	\times		b8-02	Energy Saving Gain	0.0 to 10.0	*3	\bigcirc
	b3-05	Speed Search Delay Time	0.0 to 100.0	0.2 s	\times		b8-03	Energy Saving Control Filter Time Constant	0.00 to 10.00	*2	\bigcirc
	b3-06	Output Current 1 during Speed Search	0.0 to 2.0	* 4	\times					* 4	
	b3-07*8	Output Current 2 during Speed Search (Speed Estimation Type)	0.0 to 5.0	$\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { C6-01 } \\ \hline \end{array}$	\times		b8-04	Energy Saving Coefficient Value	655.00	$\begin{array}{\|c\|} \hline \text { dep. on } \\ \text { E2-11 } \end{array}$	\times
	b3-08	Current Control Gain during Speed	0.00 to 6.00	dep. On	\times		b8-05	Power Detection Filter Time	0 to 2000	20 ms	\times
		Search (Speed Estimation Type)		A1-02			b8-06	Search Operation Voltage Limit	0 to 100	0\%	\times
	b3-10	Speed Search Detection Compensation Gain	1.00 to 1.20	1.05	\times		b8-16	Energy Saving Parameter (Ki) for PM Motors	0.00 to 3.00*4	1.00	\times
	b3-12*8	Minimum Curent Detection Level during Speed Search	2.0 to 10.0	6.0	\times		b8-17	Energy Saving Parameter (Kt) for PM Motors	0.00 to $3.00 * 4$	1.00	\times
	b3-14	Bi-Directional Speed Search Selection	0, 1	*3	\times	$\begin{aligned} & \hline \text { 엥 } \\ & \\ & \hline \end{aligned}$	b9-01	Zero Servo Gain	0 to 100	5	\times
	b3-17	Speed Search Restart Current Level	0 to 200	150\%	\times		b9-02	Zero Servo Completion Width	0 to 16383	10	\times
	b3-18	Speed Search Restart Detection Time	0.00 to 1.00	0.10 s	\times		C1-01	Acceleration Time 1	0.0 to 6000.0*2	10.0 s	\bigcirc
	b3-19	Number of Speed Search Restarts	0 to 10	3	\times		C1-02	Deceleration Time 1	0.0 to 6000.0*2	10.0 s	\bigcirc
	b3-24	Speed Search Method Selection	0, 1	0	\times		C1-03	Acceleration Time 2	0.0 to 6000.0*2	10.0 s	\bigcirc
	b3-25	Speed Search Wait Time	0.0 to 30.0	0.5 s	\times		C1-04	Deceleration Time 2	0.0 to 6000.0*2	10.0 s	\bigcirc
				dep. On			C1-05	Acceleration Time 3 (Motor 2 Accel Time 1)	0.0 to 6000.0*2	10.0 s	\bigcirc
	b3-26*8	Direction Deter	40 to 60000	C6-01	\times		C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)	0.0 to 6000.0*2	10.0 s	\bigcirc
				dep. On			C1-07	Acceleration Time 4 (Motor 2 Accel Time 2)	0.0 to 6000.0*2	10.0 s	\bigcirc
				02-04			C1-08	Deceleration Time 4 (Motor 2 Decel Time 2)	0.0 to 6000.0*2	10.0 s	\bigcirc
	b3-27	Start Speed Search Select	0, 1	0	\times		C1-09	Fast Stop Time	0.0 to 6000.0*2	10.0 s	$\bigcirc^{* 4}$
	b3-29*9	Speed Search Induced Voltage Level	0 to 10	10\%	\times		C1-10	Accel/Decel Time Setting Units	0, 1	1	\times
	b3-33*9	Speed Search Selection when	0. 1	0	\times		C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0	*3	\times
		Driving Instruction is Input in Uv					C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00	*3	\times
	b4-01	Timer Function On-Delay Time	0.0 to 3000.0	0.0 s	\times		C2-02	S-Curve Characteristic at Accel End	0.00 to 10.00	0.20 s	\times
	b4-02	Timer Function Off-Delay Time	0.0 to 3000.0	0.0 s	\times		C2-03	S-Curve Characteristic at Decel Start	0.00 to 10.00	0.20 s	\times
	b4-03*9	H2-01 ON Delay Time	0 to 65536	0 ms	\times		C2-04	S-Curve Characteristic at Decel End	0.00 to 10.00	0.00 s	\times
	b4-04*9	H2-01 OFF Delay Time	0 to 65536	0 ms	\times		C3-01	Slip Compensation Gain	0.0 to 2.5	*3	\bigcirc
	b4-05*9	H2-02 ON Delay Time	0 to 65536	0 ms	\times		C3-02	Slip Compensation Primary Delay Time	0 to 10000	*3	\bigcirc
	b4-06*9	H2-02 OFF Delay Time	0 to 65536	0 ms	\times		C3-03	Slip Compensation Limit	0 to 250	200\%	\times
	b4-07*9	H2-03 ON Delay Time	0 to 65536	0 ms	\times		C3-04	Slip Compensation Selection during Regeneration	0 to 2	0	\times
	b4-08*9	H2-03 OFF Delay Time	0 to 65536	0 ms	\times		C3-05*4	Output Voltage Limit Operation Selection	0, 1	0	\times

[^0]| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | C3-16*8 | Output Voltage Limit Start (Modulation) | 70.0 to 90.0 | 85.0\% | \times |
| | C3-17*8 | Output Voltage Limit Max (Modulation) | 85.0 to 100.0 | 90.0\% | \times |
| | C3-18*8 | Output Voltage Limit Level | 30.0 to 100.0 | 90.0\% | \times |
| | C3-21 | Motor 2 Slip Compensation Gain | 0.00 to 2.50 | $\begin{array}{\|c\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C3-22 | Motor 2 Slip Compensation Primary Delay Time | 0 to 10000 | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \\ \hline \end{gathered}$ | \bigcirc |
| | C3-23 | Motor 2 Slip Compensation Limit | 0 to 250 | 200\% | \times |
| | C3-24 | Motor 2 Slip Compensation Selection during Regeneration | 0 to 2 | 0 | \times |
| | C4-01 | Torque Compensation Gain | 0.00 to 2.50 | *3 | \bigcirc |
| | C4-02 | Torque Compensation Primary Delay Time1 | 0 to 60000 | *3*4 | \bigcirc |
| | C4-03 | Torque Compensation at Forward Start | 0.0 to 200.0 | 0.0\% | \times |
| | C4-04 | Torque Compensation at Reverse Start | -200.0 to 0.0 | 0.0\% | \times |
| | C4-05 | Torque Compensation Time Constant | 0 to 200 | 10 ms | \times |
| | C4-06 | Torque Compensation Primary Delay Time 2 | 0 to 10000 | 150 ms | \times |
| | C4-07 | Motor 2 Torque Compensation Gain | 0.00 to 2.50 | 1.00 | \bigcirc |
| | C5-01 | ASR Proportional Gain 1 | $\begin{gathered} 0.00 \text { to } \\ 300.00^{* 3} \end{gathered}$ | *3 | \bigcirc |
| | C5-02 | ASR Integral Time 1 | $\begin{gathered} \hline 0.000 \text { to } \\ 10.000 \end{gathered}$ | *3 | \bigcirc |
| | C5-03 | ASR Proportional Gain 2 | $\begin{gathered} \hline 0.00 \text { to } \\ 300.00 * 3 \end{gathered}$ | *3 | \bigcirc |
| | C5-04 | ASR Integral Time 2 | 0.000 to 10.000 | *3 | \bigcirc |
| | C5-05 | ASR Limit | 0.0 to 20.0 | 5.0\% | \times |
| | C5-06 | ASR Primary Delay Time Constant | 0.000 to 0.500 | *3 | \times |
| | C5-07 | ASR Gain Switching Frequency | 0.0 to 400.0 | *3 | \times |
| | C5-08 | ASR Integral Limit | 0 to 400 | 400\% | \times |
| | C5-12 | Integral Value during Accel/Decel | 0, 1 | 0 | \times |
| | C5-17 | Motor Inertia | 0.0001 to 600.00 | $\begin{aligned} & * 2 \text { dep. } \\ & \text { on E5-01 } \end{aligned}$ | \times |
| | C5-18 | Load Inertia Ratio | 0.0 to 6000.0 | 1.0 | \times |
| | C5-21 | Motor 2 ASR Proportional Gain 1 | $\begin{gathered} 0.00 \text { to } \\ 300.00^{* 3} \end{gathered}$ | $\begin{array}{c\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C5-22 | Motor 2 ASR Integral Time 1 | $\begin{gathered} 0.000 \text { to } \\ 10.000 \end{gathered}$ | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$ | \bigcirc |
| | C5-23 | Motor 2 ASR Proportional Gain 2 | $\begin{gathered} 0.00 \text { to } \\ 300.00 * 3 \end{gathered}$ | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$ | \bigcirc |
| | C5-24 | Motor 2 ASR Integral Time 2 | $\begin{gathered} \hline 0.000 \text { to } \\ 10.000 \end{gathered}$ | $\begin{array}{c\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C5-25 | Motor 2 ASR Limit | 0.0 to 20.0 | 5.0\% | \times |
| | C5-26 | Motor 2 ASR Primary Delay Time Constant | $\begin{gathered} 0.000 \text { to } \\ 0.500 \end{gathered}$ | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$ | \times |
| | C5-27 | Motor 2 ASR Gain Switching Frequency | 0.0 to 400.0 | 0.0 Hz | \times |
| | C5-28 | Motor 2 ASR Integral Limit | 0 to 400 | 400\% | \times |
| | C5-32 | Integral Operation during Accel/ Decel for Motor 2 | 0,1 | 0 | \times |
| | C5-37 | Motor 2 Inertia | 0.0001 to 600.00 | *2 | \times |
| | C5-38 | Motor 2 Load Inertia Ratio | 0.0 to 6000.0 | 1.0 | \times |
| | C5-39*9 | Motor 2 ASR Primary Delay Time Constant 2 | 0.000 to 0.500 | 0.000 s | \times |
| | C6-01 | Drive Duty Selection | 0, 1 | 0 | \times |
| | C6-02 | Carrier Frequency Selection | 1 to F*4 | *2 | \times |
| | C6-03 | Carrier Frequency Upper Limit | 1.0 to $15.0 * 4$ | *2 | \times |
| | C6-04 | Carrier Frequency Lower Limit | 1.0 to $15.0 * 4$ | *2 | \times |
| | C6-05 | Carrier Frequency Proportional Gain | 0 to 99 | *2 | \times |
| | C6-09*9 | Carrier Frequency during Rotational Auto-Tuning | 0, 1 | 0 | \times |
| | d1-01 | Frequency Reference 1 | $\begin{gathered} 0.00 \text { to } \\ 400.00 * 2 * 3 \end{gathered}$ | 0.00 Hz | \bigcirc |
| | d1-02 | Frequency Reference 2 | | | \bigcirc |
| | d1-03 | Frequency Reference 3 | | | \bigcirc |
| | d1-04 | Frequency Reference 4 | | | \bigcirc |
| | d1-05 | Frequency Reference 5 | | | \bigcirc |
| | d1-06 | Frequency Reference 6 | | | \bigcirc |
| | d1-07 | Frequency Reference 7 | | | \bigcirc |
| | d1-08 | Frequency Reference 8 | | | \bigcirc |

Function	No.	Name	Range	Default	Changes during Run
	d1-09	Frequency Reference 9	$\begin{gathered} 0.00 \text { to } \\ 400.00 * 2 * 3 \end{gathered}$	0.00 Hz	\bigcirc
	d1-10	Frequency Reference 10			\bigcirc
	d1-11	Frequency Reference 11			\bigcirc
	d1-12	Frequency Reference 12			\bigcirc
	d1-13	Frequency Reference 13			\bigcirc
	d1-14	Frequency Reference 14			\bigcirc
	d1-15	Frequency Reference 15			\bigcirc
	d1-16	Frequency Reference 16			\bigcirc
	d1-17	Jog Frequency Reference	0.00 to 400.00***3	6.00 Hz	\bigcirc
	d2-01	Frequency Reference Upper Limit	0.0 to 110.0	100.0\%	\times
	d2-02	Frequency Reference Lower Limit	0.0 to 110.0	0.0\%	\times
	d2-03	Master Speed Reference Lower Limit	0.0 to 110.0	0.0\%	\times
	d3-01	Jump Frequency 1	0.0 to 400.0	*3	\times
	d3-02	Jump Frequency 2			\times
	d3-03	Jump Frequency 3			\times
	d3-04	Jump Frequency Width	0.0 to 20.0	*3	\times
	d4-01	Freq. Ref. Hold Function Selection	0, 1	0	\times
	d4-03	Freq. Ref. Bias Step (Up/Down 2)	0.00 to 99.99	0.00 Hz	\bigcirc
	d4-04	Freq. Ref. Bias Accel/Decel (Up/Down 2)	0, 1	0	\bigcirc
	d4-05	Freq. Ref. Bias Operation Mode Selection (Up/Down 2)	0,1	0	\bigcirc
	d4-06	Freq. Ref. Bias (Up/Down 2)	-99.9 to +100.0	0.0\%	\times
	d4-07	Analog Frequency Reference Fluctuation (Up 2/Down 2)	0.1 to 100.0	1.0\%	\bigcirc
	d4-08	Freq. Ref. Bias Upper Limit (Up/Down 2)	0.0 to 100.0	0.0\%	\bigcirc
	d4-09	Freq. Ref. Bias Lower Limit (Up/Down 2)	-99.9 to 0.0	0.0\%	\bigcirc
	d4-10	Up/Down Freq. Ref. Limit Selection	0, 1	0	\times
	d5-01	Torque Control Selection	0, 1	0	\times
	d5-02	Torque Reference Delay Time	0 to 1000	*3	\times
	d5-03	Speed Limit Selection	1,2	1	\times
	d5-04	Speed Limit	-120 to +120	0\%	\times
	d5-05	Speed Limit Bias	0 to 120	10\%	\times
	d5-06	Speed/Torque Control Switchover Time	0 to 1000	0 ms	\times
	d5-08	Unidirectional Speed Limit Bias	0, 1	1	\times
	d6-01	Field Weakening Level	0 to 100	80\%	\times
	d6-02	Field Weakening Frequency Limit	0.0 to 400.0	0.0 Hz	\times
	d6-03	Field Forcing Selection	0, 1	0	\times
	d6-06	Field Forcing Limit	100 to 400	400\%	\times
	d7-01	Offset Frequency 1	-100.0 to +100.0	0.0\%	\bigcirc
	d7-02	Offset Frequency 2			\bigcirc
	d7-03	Offset Frequency 3			\bigcirc
	E1-01	Input Voltage Setting	155 to 255	$\begin{gathered} 200 \mathrm{~V} \\ * 5 \end{gathered}$	\times
	E1-03	V/f Pattern Selection	0 to $\mathrm{F}^{* 3}$	F*1	\times
	E1-04	Maximum Output Frequency	40.0 to 400.0*3	*2 dep. on E5-01 for PM motor	\times
	E1-05	Maximum Voltage	0.0 to 255.0*5	*2 dep. on E5-01 for PM motor	\times
	E1-06	Base Frequency	0.0 to E1-04*3	*2 dep. on E5-01 for PM motor	\times
	E1-07	Middle Output Frequency	0.0 to E1-04	*2	\times
	E1-08	Middle Output Frequency Voltage	0.0 to 255.0*5	*2	\times
	E1-09	Minimum Output Frequency	0.0 to E1-04*5	*2 dep. on E5-01 for PM motor	\times
	E1-10	Minimum Output Frequency Voltage	0.0 to 255.0*5	*2	\times
	E1-11	Middle Output Frequency 2	0.0 to E1-04*2	0.0 Hz	\times
	E1-12	Middle Output Frequency Voltage 2	$\begin{gathered} 0.0 \text { to } \\ 255.0 * 2 * 5 \end{gathered}$	0.0 V	\times
	E1-13	Base Voltage	0.0 to 255.0*5	$0.0 \mathrm{~V}^{*}$	\times

[^1]| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | E2-01 | Motor Rated Current | 10% to 200\% of the drive rated current*2 | *2 | \times |
| | E2-02 | Motor Rated Slip | 0.00 to 20.00 | *2 | \times |
| | E2-03 | Motor No-Load Current | 0 to E2-01*2 | *2 | \times |
| | E2-04 | Number of Motor Poles | 2 to 48 | 4 | \times |
| | E2-05 | Motor Line-to-Line Resistance | 0.000 to 65.000*4 | *2 | \times |
| | E2-06 | Motor Leakage Inductance | 0.0 to 40.0 | *2 | \times |
| | E2-07 | Motor Iron-Core Saturation Coefficient 1 | E2-07 to 0.50 | 0.50 | \times |
| | E2-08 | Motor Iron-Core Saturation Coefficient 2 | E2-07 to 0.75 | 0.75 | \times |
| | E2-09 | Motor Mechanical Loss | 0.0 to 10.0 | 0.0\% | \times |
| | E2-10 | Motor Iron Loss for Torque Compensation | 0 to 65535 | *2 | \times |
| | E2-11 | Motor Rated Power | 0.00 to 650.00 | *2 | \times |
| | E3-01 | Motor 2 Control Mode Selection | 0 to 3 | 0 | \times |
| | E3-04 | Motor 2 Max. Output Frequency | 40.0 to 400.0 | $\begin{array}{c\|} \text { dep. on } \\ \text { E3-01 } \end{array}$ | \times |
| | E3-05 | Motor 2 Max. Voltage | 0.0 to 255.0*5 | *5 | \times |
| | E3-06 | Motor 2 Base Frequency | 0.0 to E3-04 | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$ | \times |
| | E3-07 | Motor 2 Mid Output Freq. | 0.0 to E3-04 | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$ | \times |
| | E3-08 | Motor 2 Mid Output Freq. Voltage | 0.0 to 255.0*5 | $\begin{gathered} * 5 \\ \text { dep. on } 2 \cdot-0.1 \end{gathered}$ | \times |
| | E3-09 | Motor 2 Min. Output Freq. | 0.0 to E3-04 | $\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$ | \times |
| | E3-10 | Motor 2 Min. Output Freq. Voltage | 0.0 to 255.0*5 | $\begin{gathered} * 5 \\ \text { dep.on } n=-01 \end{gathered}$ | \times |
| | E3-11 | Motor 2 Mid Output Frequency 2 | 0.0 to E3-04*3 | $0.0 \mathrm{~Hz}^{* 2}$ | \times |
| | E3-12 | Motor 2 Mid Output Frequency Voltage 2 | 0.0 to 255.0*5 | $0.0 \mathrm{Hz*2}$ | \times |
| | E3-13 | Motor 2 Base Voltage | 0.0 to 255.0*5 | $0.0 \mathrm{~Hz}^{* 2}$ | \times |
| | E4-01 | Motor 2 Rated Current | $\begin{aligned} & 10 \% \text { to } 200 \% \\ & \text { of the drive } \\ & \text { rated current*2 } \end{aligned}$ | *2 | \times |
| | E4-02 | Motor 2 Rated Slip | 0.00 to 20.00*2 | *2 | \times |
| | E4-03 | Motor 2 Rated No-Load Current | 0 to E4-01*2 | *2 | \times |
| | E4-04 | Motor 2 Motor Poles | 2 to 48 | 4 | \times |
| | E4-05 | Motor 2 Line-to-Line Resistance | 0.000 to 65.000*4 | *2 | \times |
| | E4-06 | Motor 2 Leakage Inductance | 0.0 to 40.0 | *2 | \times |
| | E4-07 | Motor 2 Motor Iron-Core Saturation Coefficient 1 | 0.00 to 0.50 | 0.50 | \times |
| | E4-08 | Motor 2 Motor Iron-Core Saturation Coefficient 2 | E4-07 to 0.75 | 0.75 | \times |
| | E4-09 | Motor 2 Mechanical Loss | 0.0 to 10.0 | 0.0\% | \times |
| | E4-10 | Motor 2 Iron Loss | 0 to 65535 | *2 | \times |
| | E4-11 | Motor 2 Rated Capacity | 0.00 to 650.00 | *2 | \times |
| | E5-01 | Motor Code Selection | 0000 to FFFF | *1*2 | \times |
| | E5-02 | Motor Rated Capacity | 0.10 to 650.00 | $* 1$ dep. 0 ne50. | \times |
| | E5-03 | Motor Rated Current | $\begin{array}{\|c\|} \hline 10 \% \text { to } 200 \% \\ \text { of the drive } \\ \text { rated current*2 } \\ \hline \end{array}$ | $\begin{array}{c\|} * 1 \\ \text { dep. on } \\ \text { E5-01 } \\ \hline \end{array}$ | \times |
| | E5-04 | Number of Motor Poles | 2 to 48 | $\left.\begin{array}{c\|} * \\ * 1 \\ \text { dep. on } 5501 \end{array} \right\rvert\,$ | \times |
| | E5-05 | Motor Stator Resistance | 0.000 to 65.000 | $* 1$ dep. 0 ne501 | \times |
| | E5-06 | Motor d-Axis Inductance | $\begin{aligned} & 0.00 \text { to } \\ & 300.00 \\ & \hline \end{aligned}$ | $\left.\begin{array}{c\|} * 1 \\ \text { dep. on } 5 \cdot-01 \end{array} \right\rvert\,$ | \times |
| | E5-07 | Motor q-Axis Inductance | $\begin{aligned} & 0.00 \text { to } \\ & 600.00 \end{aligned}$ | $\begin{array}{c\|} * 1 \\ \text { dep. on } 5501 \end{array}$ | \times |

Function	No.	Name	Range	Default	Changes during Run
	E5-09	Motor Induction Voltage Constant 1	0.0 to 2000.0	$\begin{gathered} * 1 \\ \text { dep. on } 5 \cdot-01 \end{gathered}$	\times
	E5-11	Encoder Z Pulse Offset	-180.0 to +180.0	0.0 deg	\times
	E5-24	Motor Induction Voltage Constant 2	0.0 to 6500.0	$\left\|\begin{array}{c} * 1 \\ \operatorname{dep} .0 n \mathrm{E} 5 \cdot 0 \end{array}\right\|$	\times
	E5-25*4	Polarity Switch for Initial Polarity Estimation	0, 1	0	\times
	F1-01	PG 1 Pulses Per Revolution	0 to 60000	*3	\times
	F1-02	Operation Selection at PG Open Circuit (PGo)	0, 1	1	\times
	F1-03	Operation Selection at Overspeed (oS)	0 to 3	1	\times
	F1-04	Operation Selection at Deviation	0 to 3	3	\times
	F1-05	PG 1 Rotation Selection	0, 1	*3	\times
	F1-06	PG 1 Division Rate for PG Pulse Monitor	1 to 132	1	\times
	F1-08	Overspeed Detection Level	0 to 120	115\%	\times
	F1-09	Overspeed Detection Delay Time	0.0 to 2.0	*3	\times
	F1-10	Excessive Speed Deviation Detection Level	0 to 50	10\%	\times
	F1-11	Excessive Speed Deviation Detection Delay Time	0.0 to 10.0	0.5 s	\times
	F1-12	PG 1 Gear Teeth 1	0 to 1000	0	\times
	F1-13	PG 1 Gear Teeth 2	0 to 1000	0	\times
	F1-14	PG Open-Circuit Detection Time	0.0 to 10.0	2.0 s	\times
	F1-18	dv3 Detection Selection	0 to 10	10	\times
	F1-19	dv4 Detection Selection	0 to 5000	128	\times
	F1-20	PG Option Card Disconnect Detection 1	0, 1	1	\times
	F1-21	PG 1 Signal Selection	0, 1	0	\times
	F1-30	PG Card Option Port for Motor 2 Selection	0, 1	1	\times
	F1-31	PG 2 Pulses Per Revolution	0 to 60000	600 ppr	\times
	F1-32	PG 2 Rotation Selection	0, 1	0	\times
	F1-33	PG 2 Gear Teeth 1	0 to 1000	0	\times
	F1-34	PG 2 Gear Teeth 2	0 to 1000	0	\times
	F1-35	PG 2 Division Rate for PG Pulse Monitor	1 to 132	1	\times
	F1-36	PG Option Card Disconnect Detection 2	0, 1	1	\times
	F1-37	PG 2 Signal Selection	0, 1	0	\times
	F1-50*9	Encoder Selection	0 to 2	0	\times
	F1-51*9	PGoH Detection Level	1 to 100	80\%	\times
	F1-52*9	Communication Speed of Serial Encoder Selection	0 to 3	0	\times
	F2-01	Analog Input Option Card Operation Selection	0, 1	0	\times
	F2-02	Analog Input Option Card Gain	-999.9 to +999.9	100.0\%	\bigcirc
	F2-03	Analog Input Option Card Bias	-999.9 to +999.9	0.0\%	\bigcirc
	F3-01	Digital Input Option Card Input Selection	0 to 7	0	\times
	F3-03	Digital Input Option DI-A3 Data Length Selection	0 to 2	2	\times
	F4-01	Terminal V1 Monitor Selection	000 to 999	102	\times
	F4-02	Terminal V1 Monitor Gain	-999.9 to +999.9	100.0\%	\bigcirc
	F4-03	Terminal V2 Monitor Selection	000 to 999	103	\times
	F4-04	Terminal V2 Monitor Gain	-999.9 to +999.9	50.0\%	\bigcirc
	F4-05	Terminal V1 Monitor Bias	-999.9 to +999.9	0.0\%	\bigcirc
	F4-06	Terminal V2 Monitor Bias	-999.9 to +999.9	0.0\%	\bigcirc
	F4-07	Terminal V1 Signal Level	0, 1	0	\times
	F4-08	Terminal V2 Signal Level	0, 1	0	\times
	F5-01	Terminal P1-PC Output Selection	0 to 192	0	\times
	F5-02	Terminal P2-PC Output Selection	0 to 192	1	\times
	F5-03	Terminal P3-PC Output Selection	0 to 192	2	\times
	F5-04	Terminal P4-PC Output Selection	0 to 192	4	\times
	F5-05	Terminal P5-PC Output Selection	0 to 192	6	\times
	F5-06	Terminal P6-PC Output Selection	0 to 192	37	\times
	F5-07	Terminal M1-M2 Output Selection	0 to 192	F	\times
	F5-08	Terminal M3-M4 Output Selection	0 to 192	F	\times
	F5-09	DO-A3 Output Mode Selection	0 to 2	0	\times
	F6-01	Communications Error Operation Selection	0 to 5	1	\times
	F6-02	External Fault from Comm. Option Detection Selection	0,1	0	\times
	F6-03	External Fault from Comm. Option Operation Selection	0 to 3	1	\times
	F6-04	bUS Error Detection Time	0.0 to 5.0	2.0 s	\times

Note: Footnotes are listed on page 23.

Function	No.	Name	Range	Default	Changes during Run
	F6-06	Torque Reference/Torque Limit Selection from Communications Option	0, 1	0	\times
	F6-07	Multi-Step Speed during NetRef/ ComRef	0,1	0	\times
	F6-08	Reset Communication Parameters	0,1	0*1	\times
	$\begin{aligned} & \text { F6-10 } \\ & \text { to } \\ & \text { F6-14 } \end{aligned}$	CC-Link Parameter	-	-	\times
	$\begin{aligned} & \text { F6-20 } \\ & \text { to } \\ & \text { F6-26 } \end{aligned}$	MECHATROLINK Parameter	-	-	\times
	$\begin{aligned} & \text { F6-30 } \\ & \text { to } \\ & \text { F6-32 } \end{aligned}$	PROFIBUS-DP Parameter	-	-	\times
	$\begin{aligned} & \text { F6-35 } \\ & \text { to } \\ & \text { F6-36 } \end{aligned}$	CANopen Parameter	-	-	\times
	$\begin{aligned} & \text { F6-50 } \\ & \text { to } \\ & \text { F6-63 } \end{aligned}$	DeviceNet Parameters	-	-	\times
	$\begin{aligned} & \text { F6-64 } \\ & \text { to } \\ & \text { F6-71 } \end{aligned}$	Reserved	-	-	\times
	$\begin{gathered} \text { F7-01 } \\ \text { to } \\ \text { F7-42 } \end{gathered}$	EtherNet Parameter	-	-	\times
	H1-01	Multi-Function Digital Input Terminal S1 Function Selection	1 to 9F	$40(F) * 6$	\times
	H1-02	Multi-Function Digital Input Terminal S2 Function Selection	1 to 9F	$41(\mathrm{~F}) * 6$	\times
	H1-03	Multi-Function Digital Input Terminal S3 Function Selection	0 to 9F	24	\times
	H1-04	Multi-Function Digital Input Terminal S4 Function Selection	0 to 9F	14	\times
	H1-05	Multi-Function Digital Input Terminal S5 Function Selection	0 to 9F	3 (0)*6	\times
	H1-06	Multi-Function Digital Input Terminal S6 Function Selection	0 to 9F	$4(3) * 6$	\times
	H1-07	Multi-Function Digital Input Terminal S7 Function Selection	0 to 9F	$6(4) * 6$	\times
	H1-08	Multi-Function Digital Input Terminal S8 Function Selection	0 to 9F	8	\times
	H2-01	Terminals M1-M2 Function Selection (relays)	0 to 192	0	\times
	H2-02	Terminal P1-PC Function Selection (photocoupler)	0 to 192	1	\times
	H2-03	Terminal P2-PC Function Selection (photocoupler)	0 to 192	2	\times
	H2-06	Watt Hour Output Unit Selection	0 to 4	0	\times
	H2-07*9	Memobus Regs1 Address Select	1 to 1FFFH	1	\times
	H2-08*9	Memobus Regs1 Bit Select	0 to FFFFH	0	\times
	H2-09*9	Memobus Regs2 Address Select	1 to 1FFFH	1	\times
	H2-10*9	Memobus Regs2 Bit Select	0 to FFFFH	0	\times
	H3-01	Terminal A1 Signal Level Selection	0, 1	0	\times
	H3-02	Terminal A1 Function Selection	0 to 32	0	\times
	H3-03	Terminal A1 Gain Setting	-999.9 to +999.9	100.0\%	\bigcirc
	H3-04	Terminal A1 Bias Setting	-999.9 to +999.9	0.0\%	\bigcirc
	H3-05	Terminal A3 Signal Level Selection	0,1	0	\times
	H3-06	Terminal A3 Function Selection	0 to 32	2	\times
	H3-07	Terminal A3 Gain Setting	-999.9 to +999.9	100.0\%	\bigcirc
	H3-08	Terminal A3 Bias Setting	-999.9 to +999.9	0.0\%	\bigcirc
	H3-09	Terminal A2 Signal Level Selection	0 to 3	2	\times
	H3-10	Terminal A2 Function Selection	0 to 32	0	\times
	H3-11	Terminal A2 Gain Setting	-999.9 to +999.9	100.0\%	\bigcirc
	H3-12	Terminal A2 Bias Setting	-999.9 to +999.9	0.0\%	\bigcirc
	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	\times
	H3-14	Analog Input Terminal Enable Selection	1 to 7	7	\times

Function	No.	Name	Range	Default	Changes during Run
	H3-16	Multi-Function Analog Input Terminal A1 Offset	$-500 \sim+500$	0	\times
	H3-17	Multi-Function Analog Input Terminal A2 Offset	$-500 \sim+500$	0	\times
	H3-18	Multi-Function Analog Input Terminal A3 Offset	$-500 \sim+500$	0	\times
	H4-01	Multi-Function Analog Output Terminal FM Monitor Selection	000 to 999	102	\times
	H4-02	Multi-Function Analog Output Terminal FM Gain	-999.9 to +999.9	100.0\%	\bigcirc
	H4-03	Multi-Function Analog Output Terminal FM Bias	-999.9 to +999.9	0.0\%	\bigcirc
	H4-04	Multi-Function Analog Output Terminal AM Monitor Selection	000 to 999	103	\times
	H4-05	Multi-Function Analog Output Terminal AM Gain	-999.9 to +999.9	50.0\%	\bigcirc
	H4-06	Multi-Function Analog Output Terminal AM Bias	-999.9 to +999.9	0.0\%	\bigcirc
	H4-07	Multi-Function Analog Output Terminal FM Signal Level Selection	0,1	0	\times
	H4-08	Multi-Function Analog Output Terminal AM Signal Level Selection	0,1	0	\times
	H5-01	Drive Node Address	0 to FFH	1F	\times
	H5-02	Communication Speed Selection	0 to 8	3	\times
	H5-03	Communication Parity Selection	0 to 2	0	\times
	H5-04	Stopping Method After Communication Error (CE)	0 to 3	3	\times
	H5-05	Communication Fault Detection Selection	0,1	1	\times
	H5-06	Drive Transmit Wait Time	5 to 65	5 ms	\times
	H5-07	RTS Control Selection	0,1	1	\times
	H5-09	CE Detection Time	0.0 to 10.0	2.0 s	\times
	H5-10	Unit Selection for MEMOBUS/ Modbus Register 0025H	0,1	0	\times
	H5-11	Communications ENTER Function Selection	0,1	0	\times
	H5-12	Run Command Method Selection	0,1	0	\times
	H5-17*9	Operation Selection when Unable to Write into EEPROM	0, 1	0	\times
	H5-18*9	Filter Time Constant for Motor Speed Monitoring	0 to 100	0 ms	\times
	H6-01	Pulse Train Input Terminal RP Function Selection	0 to 3	0	\times
	H6-02	Pulse Train Input Scaling	1000 to 32000	1440 Hz	\bigcirc
	H6-03	Pulse Train Input Gain	0.0 to 1000.0	100.0\%	\bigcirc
	H6-04	Pulse Train Input Bias	-100.0 to +100.0	0.0\%	\bigcirc
	H6-05	Pulse Train Input Filter Time	0.00 to 2.00	0.10 s	\bigcirc
	H6-06	Pulse Train Monitor Selection	000 to 809	102	\bigcirc
	H6-07	Pulse Train Monitor Scaling	0 to 32000	1440 Hz	\bigcirc
	H6-08	Pulse Train Input Minimum Frequency	0.1 to 1000.0	0.5 Hz	\times
	L1-01	Motor Overload Protection Selection	0 to 6	*3	\times
	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min .	\times
	L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3	\times
	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1	\times
	L1-05	Motor Temperature Input Filter Time (PTC input)	0.00 to 10.00	0.20 s	\times
	L1-08*9	OL1 Current Lvl	0.0 10% to 150% of the drive rated current	0.0 A	\times
	L1-09*9	OL1 Current Lvl (for 2nd motor)	0.0 10% to 150% of the drive rated current	0.0 A	\times

Function	No.	Name	Range	Default	Changes during Run
	L1-13	Continuous Electrothermal Operation Selection	0, 1	1	\times
	L1-15*8	Motor 1 Thermistor Selection (NTC)	0, 1	0	\times
	L1-16*8	Motor 1 Overheat Temperature	50 to 200	$120^{\circ} \mathrm{C}$	\times
	L1-17*8	Motor 2 Thermistor Selection (NTC)	0,1	0	\times
	L1-18*8	Motor 2 Overheat Temperature	50 to 200	$120^{\circ} \mathrm{C}$	\times
	L1-19*8	Thermistor Phase Loss Operation	0 to 3	3	\times
	L1-20*8	Motor Overheat Operation	0 to 3	1	\times
	L2-01	Momentary Power Loss Operation Selection	0 to 5	0	\times
	L2-02	Momentary Power Loss Ride-Thru Time	0.0 to 25.5	*2	\times
	L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 to 5.0	*2	\times
	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0	*2	\times
	L2-05	Undervoltage Detection Level (Uv)	150 to 210*5	$\begin{gathered} * 5 \\ \text { dep. on } \\ \text { E1-01 } \end{gathered}$	\times
	L2-06	KEB Deceleration Time	0.00 to 6000.0*2	0.00 s	\times
	L2-07	KEB Acceleration Time	0.00 to 6000.0*2	0.00 s	\times
	L2-08	Frequency Gain at KEB Start	0 to 300	100\%	\times
	L2-10	KEB Detection Time	0 to 2000	50 ms	\times
	L2-11	DC Bus Voltage Setpoint during KEB	150 to 400*5	$\begin{array}{c\|} * \\ \text { dep. on } \\ \text { E1-01 } \end{array}$	\times
	L2-29	KEB Method Selection	0 to 3	0	\times
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	\times
	L3-02	Stall Prevention Level during Acceleration	0 to 150*2	*2	\times
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50\%	\times
	L3-04	Stall Prevention Selection during Deceleration	0 to 5*3*4	1	\times
	L3-05	Stall Prevention Selection during Run	0 to 2	1	\times
	L3-06	Stall Prevention Level during Run	30 to 150*2	*2	\times
	L3-11	Overvoltage Suppression Function Selection	0, 1	0	\times
	L3-17	Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention	150 to 400*5	375 Vdc*5 dep. on E1-01	\times
	L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	*3	\times
	L3-21	Accel/Decel Rate Calculation Gain	0.10 to 10.00	*3	\times
	L3-22	Deceleration Time at Stall Prevention during Acceleration	0.0 to 6000.0	0.0 s	\times
	L3-23	Automatic Reduction Selection for Stall Prevention during Run	0,1	0	\times
	L3-24	Motor Acceleration Time for Inertia Calculations	$\begin{gathered} 0.001 \text { to } \\ 10.000 \end{gathered}$	*2 dep. on E2-11 dep. On E5.01	\times
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	\times
	L3-26	Additional DC Bus Capacitors	0 to 65000	$0 \mu \mathrm{~F}$	\times
	L3-27	Stall Prevention Detection Time	0 to 5000	50 ms	\times
	L3-34*9	Torque Limit Delay Time	0.000 to 1.000	$\begin{gathered} \text { dep. On } \\ \text { A1-02 } \end{gathered}$	\times
	L3-35*9	Speed Agree Width at Intelligent Stall Prevention during Deceleration	0.00 to 1.00	0.00 Hz	\times
	L4-01	Speed Agreement Detection Level	0.0 to 400.0	*3	\times
	L4-02	Speed Agreement Detection Width	0.0 to 20.0	*3	\times
	L4-03	Speed Agreement Detection Level (+ - $)$	-400.0 to +400.0	*3	\times
	L4-04	Speed Agreement Detection Width (+/-)	0.0 to 20.0	*3	\times
	L4-05	Frequency Reference Loss Detection Selection	0, 1	0	\times
	L4-06	Frequency Reference at Reference Loss	0.0 to 100.0	80.0\%	\times
	L4-07	Speed Agreement Detection Selection	0, 1	0	\times

Function	No.	Name	Range	Default	Changes during Run
	L5-01	Number of Auto Restart Attempts	0 to 10	0	\times
	L5-02	Auto Restart Fault Output Operation Selection	0, 1	0	\times
	L5-04	Fault Reset Interval Time	0.5 to 600.0	10.0 s	\times
	L5-05	Fault Reset Operation Selection	0, 1	0	\times
	L6-01	Torque Detection Selection 1	0 to 8	0	\times
	L6-02	Torque Detection Level 1	0 to 300	150\%	\times
	L6-03	Torque Detection Time 1	0.0 to 10.0	0.1 s	\times
	L6-04	Torque Detection Selection 2	0 to 8	0	\times
	L6-05	Torque Detection Level 2	0 to 300	150\%	\times
	L6-06	Torque Detection Time 2	0.0 to 10.0	0.1 s	\times
	L6-08	Mechanical Weakening Detection Operation	0 to 8	0	\times
	L6-09	Mechanical Weakening Detection Speed Level	-110.0 to +110.0	110.0\%	\times
	L6-10	Mechanical Weakening Detection Time	0.0 to 10.0	0.1 s	\times
	L6-11	Mechanical Weakening Detection Start Time	0 to 65535	0	\times
	L7-01	Forward Torque Limit	0 to 300	200\%	\times
	L7-02	Reverse Torque Limit	0 to 300	200\%	\times
	L7-03	Forward Regenerative Torque Limit	0 to 300	200\%	\times
	L7-04	Reverse Regenerative Torque Limit	0 to 300	200\%	\times
	L7-06	Torque Limit Integral Time Constant	5 to 10000	200 ms	\times
	L7-07	Torque Limit Control Method Selection during Accel/Decel	0, 1	0	\times
	L7-16	Torque Limit Delay at Start	0, 1	1	\times
	L8-01*9	Internal Dynamic Braking Resistor Protection Selection (ERF type)	0,1	0	\times
	L8-02	Overheat Alarm Level	50 to 130	*2	\times
	L8-03	Overheat Pre-Alarm Operation Selection	0 to 4	3	\times
	L8-05	Input Phase Loss Protection Selection	0, 1	0	\times
	L8-07	Output Phase Loss Protection	0 to 2	0	\times
	L8-09	Output Ground Fault Detection Selection	0, 1	1	\times
	L8-10	Heatsink Cooling Fan Operation Selection	0, 1	0	\times
	L8-11	Heatsink Cooling Fan Off Delay Time	0 to 300	60 s	\times
	L8-12	Ambient Temperature Setting	-10 to +50	$40^{\circ} \mathrm{C}$	\times
	L8-15	oL2 Characteristics Selection at Low Speeds	0, 1	1	\times
	L8-18	Software Current Limit Selection	0, 1	0	\times
	L8-19	Frequency Reduction Rate during of Pre-Alarm	0.1 to 0.9	0.8	\times
	L8-27	Overcurrent Detection Gain	0.0 to 400.0*4	300.0\%	\times
	L8-29	Current Unbalance Detection (LF2)	0 to 3*4	1	\times
	L8-32	Magnetic Contactor, Fan Power Supply Faut Selection	0 to 4	1	\times
	L8-35	Installation Method Selection	0 to 3	*1 *2	\times
	L8-38	Carrier Frequency Reduction Selection	0 to 2	*2	\times
	L8-40	Carrier Frequency Reduction Off DelayTime	0.00 to 2.00	*3	\times
	L8-41	High Current Alarm Selection	0, 1	0	\times
	L8-55*9	Internal Braking Transistor Protection	0,1	1	\times
	L8-78*8	Power Unit Output Phase Loss Protection	0, 1	1	\times
	L8-93	LSo Detection Time at Low Speed	0.0 to 10.0	1.0 s	\times
	L8-94	LSo Detection Level at Low Speed	0 to 10	3\%	\times
	L8-95	Average LSo Frequency at Low Speed	1 to 50	10 times	\times
	L9-03*9	Carrier Frequency Reduction Level Selection	0, 1	0	\times
	n1-01	Hunting Prevention Selection	0, 1	1	\times
	n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00	\times
	n1-03	Hunting Prevention Time Constant	0 to 500	* 4	\times
	n1-05	Hunting Prevention Gain while in Reverse	0.00 to 2.50	0.00	\times
	n2-01	Speed Feedback Detection Control (AFR) Gain	0.00 to 10.00	1.00	\times
	n2-02	Speed Feedback Detection Control (AFR) Time Constant 1	0 to 2000	50 ms	\times
	n2-03	Speed Feedback Detection Control (AFR) Time Constant 2	0 to 2000	750 ms	\times
	n3-01	High-Slip Braking Deceleration Frequency Width	1 to 20	5\%	\times
	n3-02	High-Slip Braking Current Limit	100 to 200	*2	\times
	n3-03	High-Slip Braking Dwell Time at Stop	0.0 to 10.0	1.0 s	\times
	n3-04	High-Slip Braking Overload Time	30 to 1200	40 s	\times
	n3-13	Overexcitation Deceleration Gain	1.00 to 1.40	1.10	\times
	n3-14	High Frequency Injection during Overexcitation Deceleration	0,1	0	\times
	n3-21	High-Slip Suppression Current Level	0 to 150	100\%	\times
	n3-23	Overexcitation Operation Selection	0 to 2	0	\times

Note: Footnotes are listed on page 23.

Function	No.	Name	Range	Default	Changes during Run
	n5-01	Feed Forward Control Selection	0, 1	0	\times
	n5-02	Motor Acceleration Time	$\begin{gathered} \hline 0.001 \text { to } \\ 10.000 \end{gathered}$	$\begin{array}{c\|} \hline * 2 \\ \text { dep.on } 5 \text { E.01 } \end{array}$	\times
	n5-03	Feed Forward Control Gain	0.00 to 100.00	1.00	\times
	n6-01	Online Tuning Selection	0 to 2	0	\times
	n6-05	Online Tuning Gain	0.1 to 50.0	1.0	\times
	n8-01	Initial Rotor Position Estimation Current	0 to 100	50\%	\times
	n8-02	Pole Attraction Current	0 to 150	80\%	\times
	n8-11*9	Induction Voltage Estimation Gain 2	0.0 to 1000.0	$\begin{array}{c\|} \text { dep. on } \\ \text { n8-72 } \end{array}$	\times
	n8-14*9	Polarity Compensation Gain 3	0.000 to 10.000	1.000	\times
	n8-15*9	Polarity Compensation Gain 4	0.000 to 10.000	0.500	\times
	n8-21*9	Motor Ke Gain	0.80 to 1.00	0.90	\times
	n8-35	Initial Rotor Position Detection Selection	0 to 2	1	\times
	n8-36*9	High Frequency Injection Level	200 to 1000	500 Hz	\times
	n8-37*9	High Frequency Injection Amplitude	0.0 to 50.0	20.0\%	\times
	n8-39*9	Low Pass Filter Cutoff Frequency for High Frequency Injection	0 to 1000	50 Hz	\times
	n8-45	Speed Feedback Detection Control Gain	0.00 to 10.00	0.80	\times
	n8-47	Pull-In Current Compensation Time Constant	0.0 to 100.0	5.0 s	\times
	n8-48	Pull-In Current	20 to 200	30\%	\times
	n8-49	d-Axis Current for High Efficiency Control	-200.0 to 0.0	$\begin{gathered} \text { dep. on } \\ \text { E5-01 } \end{gathered}$	\times
	n8-51	Acceleration/Deceleration Pull-In Current	0 to 200	50\%	\times
	n8-54	Voltage Error Compensation Time Constant	0.00 to 10.00	1.00 s	\times
	n8-55	Load Inertia	0 to 3	0	\times
	n8-57	High Frequency Injection	0, 1	0	\times
	n8-62	Output Voltage Limit	0.0 to 230.0*5	$\begin{aligned} & 200.0 \\ & \mathrm{Vac} * 5 \end{aligned}$	\times
	n8-65	Speed Feedback Detection Control Gain during ov Suppression	0.00 to 10.00	1.50	\times
	n8-69	Speed Calculation Gain	0.00 to 20.00	1.00	\times
	n8-72*9	Speed Estimation Method Selection	0, 1	1	\times
	n8-84	Pole Detection Current	0 to 150	100\%	\times
	01-01	Drive Mode Unit Monitor Selection	104 to 809	106	\bigcirc
	01-02	User Monitor Selection After Power Up	1 to 5	1	\bigcirc
	01-03	Digital Operator Display Selection	0 to 3	*3	\times
	01-04	V/f Pattern Display Unit	0, 1	*3	\times
	01-05*9	LCD Contrast Control	0 to 5	3	\bigcirc
	01-10	User-Set Display Units Maximum Value	1 to 60000	*2	\times
	01-11	User-Set Display Units Decimal Display	0 to 3	*2	\times
	o2-01	LO/RE Key Function Selection	0, 1	1	\times
	02-02	STOP Key Function Selection	0, 1	1	\times
	02-03	User Parameter Default Value	0 to 2	0	\times
	o2-04	Drive Model Selection	-	$\begin{array}{\|c\|} \hline \text { dep.ondive } \\ \text { capacity } \end{array}$	\times
	02-05	Frequency Reference Setting Method Selection	0, 1	0	\times
	02-06	Operation Selection when Digita Operator is Disconnected	0, 1	0	\times
	o2-07	Motor Direction at Power Up when Using Operator	0,1	0	\times
	02-09	Reserved	-	-	\times
	03-01	Copy Function Selection	0 to 3	0	\times
	-3-02	Copy Allowed Selection	0, 1	0	\times
	-4-01	Cumulative Operation Time Setting	0 to 9999	0	\times
	04-02	Cumulative Operation Time Selection	0, 1	0	\times
	-4-03	Cooling Fan Operation Time Setting	0 to 9999	0	\times
	04-05	Capacitor Maintenance Setting	0 to 150	0\%	\times
	04-07	DC Bus Pre-charge Relay Maintenance Setting	0 to 150	0\%	\times

*1: Parameter is not reset to the default value when the drive is initialized (A1-03).
*2: Value depends on other related parameter settings. Refer to A1000 Technical Manual for details.
*3: Default setting depends on the control mode (A1-02). Refer to A1000 Tech nical Manual for details.
*4: Default setting depends on drive capacity (o2-04). Refer to A1000 Technical Manual for details.

Function	No.	Name	Range	Default	Changes during Run
	-4-09	IGBT Maintenance Setting	0 to 150	0\%	\times
	-4-11	U2, U3 Initialize Selection	0, 1	0	\times
	04-12	kWh Monitor Initialization	0, 1	0	\times
	04-13	Number of Run Commands Counter Intitilization	0,1	0	\times
	$\begin{gathered} \text { q1-01 } \\ \text { to } \\ \text { q6-07 } \end{gathered}$	DWEZ Parameters	-	-	\times
	$\begin{aligned} & \text { r1-01 } \\ & \text { to } \\ & \text { r1-40 } \end{aligned}$	DWEZ Connection Parameter 1 to 20 (upper/lower)	0 to FFFFH	0	\times
Induction Motor Auto-Tuning	T1-00	Motor 1 / Motor 2 Selection	1,2	1	\times
	T1-01	Auto-Tuning Mode Selection	0 to 5, 8, 9*3*4	0	\times
	T1-02	Motor Rated Power	0.00 to 650.00	* 4	\times
	T1-03	Motor Rated Voltage	0.0 to 255.0*5	$\begin{aligned} & 200.0 \\ & \text { Vac*5 } \end{aligned}$	\times
	T1-04	Motor Rated Current	10% to 200\% of the drive rated current	*4	\times
	T1-05	Motor Base Frequency	0.0 to 400.0	60.0 Hz	\times
	T1-06	Number of Motor Poles	2 to 48	4	\times
	T1-07	Motor Base Speed	0 to 24000	1750 r/min	\times
	T1-08	PG Number of Pulses Per Revolution	0 to 60000	600 ppr	\times
	T1-09	Motor No-Load Current (Stationary Auto-Tuning)	0 to T1-04	-	-
	T1-10	Motor Rated Slip (Stationary Auto-Tuning)	0.00 to 20.00	-	-
	T1-11	Motor Iron Loss	0 to 65535	14 W*2	\times
PM Motor Auto-Tuning	T2-01	PM Motor Auto-Tuning Mode Selection	$\begin{gathered} 0 \text { to } 3,8,9 \text {, } \\ 11,13,14 * 3 * 4 \end{gathered}$	0	\times
	T2-02	PM Motor Code Selection	0000 to FFFF	*2	\times
	T2-03	PM Motor Type	0,1	1	\times
	T2-04	PM Motor Rated Power	0.00 to 650.00	* 4	\times
	T2-05	PM Motor Rated Voltage	0.0 to 255.0*5	$\begin{aligned} & 200.0 \\ & \mathrm{Vac}^{* 5} \end{aligned}$	\times
	T2-06	PM Motor Rated Current	$\begin{aligned} & 10 \% \text { to } 200 \% \\ & \text { of the drive } \\ & \text { rated current } \end{aligned}$	*4	\times
	T2-07	PM Motor Base Frequency	0.0 to 400.0	87.5 Hz	\times
	T2-08	Number of PM Motor Poles	2 to 48	6	\times
	T2-09	PM Motor Base Speed	0 to 24000	1750 r/min	\times
	T2-10	PM Motor Stator Resistance	$\begin{gathered} \hline 0.000 \text { to } \\ 65.000 \end{gathered}$	*7	\times
	T2-11	PM Motor d-Axis Inductance	0.00 to 600.00	*7	\times
	T2-12	PM Motor q-Axis Inductance	0.00 to 600.00	*7	\times
	T2-13	Induced Voltage Constant Unit Selection	0,1	1	\times
	T2-14	PM Motor Induced Voltage Constant	0.1 to 2000.0	*7	\times
	T2-15	Pull-In Current Level for PM Motor Tuning	0 to 120	30\%	-
	T2-16	PG Number of Pulses Per Revolution for PM Motor Tuning	0 to 15000	1024 ppr	-
	T2-17	Encoder Z Pulse Offset	$\begin{gathered} -180.0 \text { to } \\ +180.0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & \text { deg } \end{aligned}$	\times
	T3-01	Test Signal Frequency	0.1 to 20.0	3.0 Hz	\times
	T3-02	Test Signal Amplitude	0.1 to 10.0	0.5 rad	\times
	T3-03	Motor Inertia	$\begin{gathered} 0.0001 \text { to } \\ 600.00 \end{gathered}$	$\begin{gathered} * 2 \\ \text { dep. on E5.01 } \end{gathered}$	\times
	T3-04	System Response Frequency	0.1 to 50.0	10.0 Hz	\times

*5: Value shown here is for 200 V class drives. Double the value when using a 400 V class drive.
*6: Value in parenthesis is the default setting for a 3-wire sequence

* 7: Sets the value for a SST4 series $1750 \mathrm{r} / \mathrm{min}$ motor according to the capacity entered to T2-02.
*8: This parameter is available in models CIMR-A: 4A0930 and 4A1200.
*9: This parameter is not available in models CIMR-A:4A0930 and 4A1200.

Basic Instructions

Outstanding operability and quick setup
Operator Names and Functions

LED Display Guide

LED	ON	Flashing	OFF
ALM	A fault has occurred.	- Alarm situation detected. - Operator error (OPE)	Normal operation
REV	Motor is rotating in reverse.	-	Motor is rotating forward.
DRV	In the "Drive Mode"	-	Programming Mode
FOUT	Output frequency	-	-
	Run command assigned to the operator (LOCAL)	-	Control assigned to remote location
(1) ${ }^{\text {ata }}$	During run	- During deceleration - Run command is present but the frequency reference is zero.	Drive is stopped.

How the RUN light works:

Using the LED Operator to Run the Drive
Drive Mode：Run and Stop commands，displays operation status such as the frequency reference，output frequency，output current，output voltage，etc．
How to Monitor the Frequency Reference

Steps	Key	Result／Display
1 Turn the power on．		F 0.00
2 Set the drive for LOCAL． The frequency reference is displayed．	㫛	Lig Lo
\downarrow		F 0.00
3 Displays the direction （forward／reverse）．	A	For
4 Displays the output frequency．	A	0.00
5 Displays the output current．	A	0．00月
6 Displays the output voltage．	A	$0.0 \cup$
7 Displays the beginning of the Monitor Menu．	A	flashing「クon
8 Displays the top of the Verify Menu．	A	flashing urFy
9 Displays the top of the Setup Mode．	A	$\begin{aligned} & \text { flashing } \\ & 5 \Gamma \cup P \end{aligned}$
10 Displays the top of the \downarrow parameter settings menu．	A	PRr
11 Displays the top of the \downarrow Auto－Tuning Mode．	A	A．「Un
Returns back to the frequency reference display．	A	

Value will flash when it is possible to change the setting．

Steps	Rey	Result／Display
Use the arrow keys to select the digits to set．	FOD．DO	

Monitor Mode：Displays operation status and information on faults．

Setup Mode

The list of Applications Presets can be accessed in the Setup Mode．Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected．All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access．
Selecting a Conveyor（A1－06＝1）

Steps	Key	Result／Display
Application Selection	ENTER	＂RPPL＊
	ENTER	00
		00^{18}
Select，＂Conveyor＂．	\wedge	\square
All parameters relating to the preset values for a Conveyor application are then listed as Preferred Parameters．	ENTER Scroll to the Preferred Parameter using the up arrow key and see which parameters have been selected．	＂End＂appears while the drive saves the new data， APPL

Conveyor Application Presets

No．	Parameter Name	Optimum Setting
A1－02	Control Method Selection	$0: \mathrm{V} / \mathrm{f}$ Control
C1－01	Acceleration Time 1	$3.0(\mathrm{~s})$
C1－02	Deceleration Time 1	$3.0(\mathrm{~s})$
C6－01	Duty Mode Selection	$0:$ Heavy Duty（HD）
L3－04	Stall Prevention Selection during Deceleration	1：Enabled

Preferred Parameters

No．	Parameter Name	No．	Parameter Name
A1－02	Control Method Selection	C1－02	Deceleration Time 1
b1－01	Frequency Reference Selection 1	E2－01	Motor Rated Current
b1－02	Run Command Selection 1	L3－04	Stall Prevention Selection during Deceleration
C1－01	Acceleration Time 1	-	-

Standard Specifications

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance (default).

200 V Class
ND : Normal Duty, HD : Heavy Duty

Model CIMR-A 2 2A	P.	0004	0006	$0008^{* *}$	0010	0012	$0018^{* 6}$	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360
0415																				

Max. Applicable Motor Capacity*1 kW		ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
		HD	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
$\begin{aligned} & \text { 㠵 } \\ & \text { 으́ } \end{aligned}$	$\begin{aligned} & \text { Rated Input } \\ & \text { Current A } \end{aligned}$	ND	3.9	7.3	8.8	10.8	13.9	18.5	24	37	52	68	80	92	111	136	164	200	271	324	394	394
		HD	2.9	5.8	7	7.5	11	15.6	18.9	28	37	52	68	80	82	111	136	164	200	271	324	394
	Rated Output	ND*3	1.3	2.3	3	3.7	4.6	6.7	8	11.4	15.2	21	26	31	42	53	64	80	95	119	137	158
	Capacity*2 kVA	HD	1.2*4	1.9*4	2.6*4	3*4	4.2*4	5.3*4	$6.7 * 4$	9.5*4	12.6*4	17.9*4	23*4	29*4	32*4	44*4	55*5	69*5	82*5	108*5	132*5	158*5
	Rated Output	ND*3	3.5	6	8	9.6	12	17.5	21	30	40	56	69	81	110	138	169	211	250	312	360	415
	Current A	HD	3.2*4	5*4	6.9*4	8*4	11*4	$14^{* 4}$	17.5*4	25*4	33*4	47*4	60*4	75*4	85*4	115*4	145*5	180*5	215*5	283*5	346*5	415*5
	Overload Tolerance		ND Rating*7: 120% of rated output current for 60 s, HD Rating*7: 150% of rated output current for 60 s (Derating may be required for repetitive loads)																			
	Carrier Frequency		1 to $15 \mathrm{kHz}{ }^{* 7}$														1 to $10 \mathrm{kHz}{ }^{* 7}$					
	Max. Output Voltage		Three-phase 200 to 240 V (relative to input voltage)																			
	Max. Output Frequency		$400 \mathrm{Hz*7}$																			
	Rated Voltage/Rated Frequency		Three-phase AC power supply: 200 to 240 Vac $50 / 60 \mathrm{~Hz}$,																			
	Allowable Voltage Flu	uctuation																				
	Allowable Frequency Fluctuation		$\pm 5 \%$																			
	Power Supply*9	ND	1.8	3.3	4.0	4.9	6.4	8.5	11	17	24	31	37	42	51	62	75	91	124	148	180	215
	kVA	HD	1.3	2.7	3.2	3.4	5.0	7.1	8.6	13	17	24	31	37	37	51	62	75	91	124	148	180
Hamonic Suppression DC Reactor			Option												Built-in							
Braking Function Braking Transisor			Built-in Option																			

* 1 : The motor capacity (kW) refers to a Yaskawa $4-\mathrm{pole}, 60 \mathrm{~Hz}, 200 \mathrm{~V}$ motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
*2: Rated output capacity is calculated with a rated output voltage of 220 V .
*3: This value assumes a carrier frequency of 2 kHz . Increasing the carrier frequency requires a reduction in current.
*4: This value assumes a carrier frequency of 8 kHz . Increasing the carrier frequency requires a reduction in current.
*5: This value assumes a carrier frequency of 5 kHz . Increasing the carrier frequency requires a reduction in current.
*6: These models are available in Japan only.
*7: Carrier frequency can be set by the user
*8: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 43.
*9: Rated input capacity is calculated with a power line voltage of $240 \mathrm{~V} \times 1.1$.
400 V Class
ND : Normal Duty, HD : Heavy Duty

[^2]Common Specifications

Item		Specifications
	Control Method	V/f Control, V/f Control with PG, Open Loop Vector Control, Closed Loop Vector Control, Open Loop Vector Control for PM, Advanced Open Loop Vector Control for PM, Closed Loop Vector Control for PM
	Frequency Control Range	0.01 to 400 Hz
	Frequency Accuracy (Temperature Fluctuation)	Digital reference: within $\pm 0.01 \%$ of the max. output frequency (-10 to $+40^{\circ} \mathrm{C}$) Analog reference: within $\pm 0.1 \%$ of the max. output frequency $\left(25 \pm 10^{\circ} \mathrm{C}\right)$
	Frequency Setting Resolution	Digital reference: 0.01 Hz , Analog reference: $0.03 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (11 bit)
	Output Frequency Resolution	0.001 Hz
	Frequency Setting Resolution	Main frequency reference: -10 to $+10 \mathrm{Vdc}, 0$ to $10 \mathrm{Vdc}(20 \mathrm{k} \Omega), 4$ to $20 \mathrm{~mA}(250 \Omega), 0$ to $20 \mathrm{~mA}(250 \Omega)$ Main speed reference: Pulse train input (max. 32 kHz)
	Starting Torque	
	Speed Control Range	V/f Control 1:40 V/f Control with PG 1:40 Open Loop Vector Control 1:200 Closed Loop Vector Control 1:1500 Open Loop Vector Control for PM 1:20 Advanced Open Loop Vector Control for PM 1:100*2,*3,*4 Closed Loop Vector Control for PM 1:1500
	Speed Control Accuracy*5	$\pm 0.2 \%$ in Open Loop Vector Control ($25 \pm 10^{\circ} \mathrm{C}$), $\pm 0.02 \%$ in Closed Loop Vector Control ($25 \pm 10^{\circ} \mathrm{C}$)
	Speed Response	10 Hz in Open Loop Vector Control ($25 \pm 10^{\circ} \mathrm{C}$), 50 Hz in Closed Loop Vector Control $\left(25 \pm 10^{\circ} \mathrm{C}\right)$ (excludes temperature fluctuation when performing Rotational Auto-Tuning)
	Torque Limit	All vector control modes allow separate settings in four quadrants
	Accel/Decel Time	0.00 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque*6	(1)Short-time decel torque*7: over 100\% for $0.4 / 0.75 \mathrm{~kW}$ motors, over 50% for 1.5 kW motors, and over 20\% for 2.2 kW and above motors (Overexcitation Deceleration, High Slip Braking: approx. 40\%) (2)Continuous regen. torque: approx. 20\% (approx. 125% with dynamic braking resistor option*8: 10\% ED, 10 s)
	V/f Characteristics	User-selected programs and V/f preset patterns possible
	Main Control Functions	Torque Control, Droop Control, Speed/Torque Control switch, Feed Forward Control, Zero Servo Control, Momentary Power Loss Ride-Thru, Speed Search, Overtorque detection, torque limit, 17 Step Speed (max.), accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-Tuning (rotational, stationary), Online Tuning, Dwell, cooling fan on/ off switch, slip compensation, torque compensation, Frequency Jump, Upper/lower limits for frequency reference, DC Injection Braking at start and stop, Overexcitation Deceleration, High Slip Braking, PID control (with Sleep function), Energy Saving Control, MEMOBUS/Modbus (RTU mode) comm. (RS-485/422, max. 115.2 kbps), Fault Restart, Application Presets, DriveWorksEZ (customized functions), Removable Terminal Block with Parameter Backup...
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200\%*9 of the HD output current.
	Overload Protection	Drive stops after 60 s at 150\% of rated output current (when set for Heavy Duty performance)*10
	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. $410 \mathrm{~V}, 400 \mathrm{~V}$ class: Stops when DC bus exceeds approx. 820 V
	Undervoltage Protection	200 V class: Stops when DC bus exceeds approx. 190 V, 400 V class: Stops when DC bus exceeds approx. 380 V (approx. 350 V when the power supply voltage is less than 400 V)
	Momentary Power Loss Ride-Thru	Stops immediately after 15 ms or longer power loss (default). Continuous operation during power up to 2 s (standard).*11
	Heatsink Overheat Protection	Thermistor
	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF type, 3\% ED)
	Stall Prevention	Stall prevention during acceleration/deceleration and constant speed operation
	Ground Fault Protection	Protection by electronic circuit *12
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
	Area of Use	Indoors
	Ambient Temperature	-10 to $+50^{\circ} \mathrm{C}$ (open-chassis), -10 to $+40^{\circ} \mathrm{C}$ (enclosure)
	Humidity	$95 \% \mathrm{RH}$ or less (no condensation)
	Storage Temperature	-20 to $+60^{\circ} \mathrm{C}$ (short-term temperature during transportation)
	Altitude	Up to 1000 meters (derating required at altitudes from 1000 m to 3000 m)
	Shock	10 Hz to $20 \mathrm{~Hz}, 9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. [$5.9 \mathrm{~m} / \mathrm{s}^{2}$ for models larger than 400 V 450 kW (when set for Heavy Duty performance)] 20 Hz to $55 \mathrm{~Hz}, 5.9 \mathrm{~m} / \mathrm{s}^{2}$ [$200 \mathrm{~V}: 45 \mathrm{~kW}$ or more, 400 V : 75 kW or more (when set for Heavy Duty performance)] or $2.0 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. [$200 \mathrm{~V}: 55 \mathrm{~kW}$ or less, $400 \mathrm{~V}: 90 \mathrm{~kW}$ or less (when set for Heavy Duty performance) 〕
Standards Compliance		\cdot UL508C • IEC/EN61800-3, IEC/EN61800-5-1 • Two Safe Disable inputs and 1EDM output according to ISO/EN13849-1 Cat. 3 PLd, IEC/EN61508 SIL2
Protection Design		IP00 open-chassis, UL Type 1 enclosure *13

*1: The capacity of the drive and motor must be considered to achieve this deceleration time. Drives of 200/400 V 30 kW (CIMR-A $\square 2 A 0138 / \mathrm{A} \square 4 \mathrm{A0072}$) torque output.
*2: Valid when high frequency injection is enabled ($n 8-57=1$).
$* 3$: Rotational Auto-Tuning must be performed to achieve the performance described with Advanced Open Loop Vector Control for PM. or less have a built-in braking transistor.
*4: Contact your Yaskawa or nearest agent when not using SSR1 series or SST4 *11: Varies in accordance with drive capacity and load. Drives with a capacity of series motors manufactured by Yaskawa Motor Co., Ltd.
*5: Speed control accuracy may vary slightly depending on installation conditions or motor used. Contact Yaskawa for consultation.
*6: Varies by motor characteristics.
*7: Momentary average deceleration torque refers to the deceleration torque from 60 Hz down to 0 Hz . This may vary depending on the motor.

* 8: Set L3-04 to 0 [Stall Prevention during Decel = Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified
*9: 200% is the target value. The value varies depending on the capacity.
*10: Overload protection may be triggered when operating with 150% of the rated output current if the output frequency is less than 6 Hz .
11: Varies in accordance with drive capacity and load. Drives with a capacity of smaller than 11 kW in the 200 V (model: CIMR- A $\square 2 \mathrm{~A} 0056$) or 400 V (model CIMR- A $\square 4$ A0031) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s or longer.
* 12: Protection is provided when the motor is grounded during Run. Protection may not be provided under the following conditions:
- Low resistance to ground from the motor cable or terminal block.
- Drive already has a short-circuit when the power is turned on.
* 13: Removing the cover of changes the drive's UL Type 1 rating to IP20 (models 2A0004 to 2A0081 and 4A0002 to 4A0044).

Standard Connection Diagram

Standard Connection Diagram

Example: 200 V Class 3.7 kW

*1: Remove the jumper when installing a DC reactor. Certain models come with a built-in DC reactor: CIMR-2A0110 and above, CIMR-4A0058 and above.
*2: Set L3-04 to 0 [Stall Prevention during Decel = Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified deceleration time.
*3: Enable the drive's braking resistor overload protection by setting L8-01 = 1 when using ERF type braking resistors. Wire the thermal overload relay between the drive and the braking resistor and connect this signal to a drive digital input. Use this input to trigger a fault in the drive in case of a braking resistor overload.
*4: Self-cooling motors do not require wiring that would be necessary with motors using a cooling fan.
*5: For control modes that do not use a motor speed feedback signal, PG option card wiring is not necessary.
*6: This figure shows an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor (0 V common/sink mode: default). When sequence connections by PNP transistor (+24 V common/source mode) or preparing a external +24 V power supply, refer to A 1000 Technical Manual for details.
$* 7$: The maximum output current capacity for the $+V$ and $-V$ terminals on the control circuit is 20 mA . Never short terminals $+\mathrm{V},-\mathrm{V}$, and AC , as this can cause erroneous operation or damage the drive.
*8: Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for voltage input.
*9: Never connect to the AC terminal ground or chassis. This can result in erroneous operation or cause a fault.

* 10: Enable the termination resistor in the last drive in a MEMOBUS/Modbus (RTU mode) network by setting DIP switch S2 to the ON position.
*11: Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use these outputs in a feedback loop.
*12: • Disconnect the wire jumper between $\mathrm{HC}-\mathrm{H} 1$ and $\mathrm{HC}-\mathrm{H} 2$ when utilizing the Safe Disable input.
- The sink/source setting for the Safe Disable input is the same as with the sequence input. Jumper S3 has the drive set for an external power supply. When not using the Safe Disable input feature, remove the jumper shorting the input and connect an external power supply.
. Time from input open to drive output stop is less than 1 ms . The wiring distance for the Safe Disable inputs should not exceed 30 m .
Note: When an Application Preset is selected, the drive I/O terminal functions change.
Control Circuit and Serial Communication Circuit Terminal Layout

Terminal Functions

Main Circuit Terminals

Max. Applicable Motor Capacity indicates Heavy Duty

Voltage	200 V			400 V		
Model CIMR-AA:-.....	2A0004 to 2A0081	2A0110, 2A0138	2A0169 to 2A0415	4A0002 to 4A0044	4A0058, 4A0072	4A0088 to 4A1200
Max. Applicable Motor CapacitykW	0.4 to 18.5	22, 30	37 to 110	0.4 to 18.5	22, 30	37 to 560
R/L1, S/L2, T/L3	Main circuit input power supply			Main circuit input power supply		
U/T1, V/T2, W/T3	Drive output			Drive output		
B1, B2	Braking resistor unit		-	Braking resistor unit		-
-	$\begin{aligned} & \text {-DC reactor } \\ & (+1,+2) \\ & - \text { DC power supply } \\ & (+1,-)^{*} \end{aligned}$	DC power supply$(+1,-)^{*}$	DC power supply (+1, -)* Braking unit (+3, -)	$\begin{aligned} & \text {-DC reactor } \\ & (+1,+2) \\ & \cdot \text { DC power supply } \\ & (+1,-)^{*} \end{aligned}$	DC power supply$(+1,-)^{*}$	DC power supply (+1, -)* Braking unit $(+3,-)$
+1						
+2						
+3	-			-		
($)$	Ground terminal (100Ω or less)			Ground terminal (10 Ω or less)		

*: DC power supply input terminals ($+1,-$) are not UL and CE certified.
Control Circuit Input Terminals (200 V/400 V Class)

Terminal Type	Termi- nal	Signal Function	Description	Signal Level	
Multi-Function Digital Input	S1	Multi-function input selection 1	Closed: Forward run (default) Open: Stop (default)	Photocoupler 24 Vdc , 8 mA	
	S2	Multi-function input selection 2	Closed: Reverse run (default) Open: Stop (default)		
	S3	Multi-function input selection 3	External fault, N.O. (default)		
	S4	Multi-function input selection 4	Fault reset (default)		
	S5	Multi-function input selection 5	Multi-step speed reference 1 (default)		
	S6	Multi-function input selection 6	Multi-step speed reference 2 (default)		
	S7	Multi-function input selection 7	Jog frequency (default)		
	S8	Multi-function input selection 8	Closed: External baseblock		
	SC	Multi-function input selection common	Multi-function input selection common		
Main Frequency Reference Input	RP	Multi-function pulse train input	Frequency reference (default) (H6-01 = 0)	0 to $32 \mathrm{kHz}(3 \mathrm{k} \Omega)$	
	+V	Setting power supply	+10.5 V power supply for analog reference ($20 \mathrm{~mA} \mathrm{max}. \mathrm{)}$		
	-V	Setting power supply	-10.5 V power supply for analog reference ($20 \mathrm{~mA} \mathrm{max}. \mathrm{)}$		
	A1	Multi-function analog input 1	-10 to +10 Vdc for -100 to $100 \%, 0$ to 10 Vdc for 0 to 100% (impedance 20 kS), Main frequency reference (defaut)		
	A2	Multi-function analog input 2	DIP switch S 1 sets the terminal for a voltage or current input signal -10 to +10 Vdc for -100 to $+100 \%, 0$ to 10 Vdc for 0 to 100% (impedance $20 \mathrm{k} \Omega$) 4 to 20 mA for 0 to $100 \%, 0$ to 20 mA for 0 to 100% (impedance 250Ω) Added to the reference value of the analog frequency for the main frequency reference (default)		
	A3	Multi-function analog input 3	-10 to +10 Vdc for -100 to $+100 \%$, 0 to 10 Vdc for 0 to 100% (impedance $20 \mathrm{k} \Omega$) Auxiliary frequency reference (default)		
	AC	Frequency reference common	0 V		
	E(G)	Connection to wire shielding and option card ground wire	-		
Multi-Function Photocoupler Output	P1	Multi-function photocoupler output (1)	Zero speed (default)	48 Vdc or less, 2 to 50 mA Photocoupler output*1	
	P2	Multi-function photocoupler output (2)	Speed agree (default)		
	PC	Photocoupler output common	-		
Fault Relay Output	MA	N.O. output	Closed: Fault	Relay output 250 Vac or less, 10 mA to $1 \mathrm{~A}, 30$ Vdc or less, 10 mA to 1 A Minimum load: $5 \mathrm{Vdc}, 10 \mathrm{~mA}$	
	MB	N.C. output	Open: Fault		
	MC	Digital output common	-		
Multi-Function	M1	Multi-function digital output	During run (default)		
Digital Output*2	M2	Mult-function digtal output	Closed: During run		
Monitor Output	MP	Pulse train input	Output frequency (default) (H6-06 = 102)	0 to $32 \mathrm{kHz}(2.2 \mathrm{k} \Omega)$	
	FM	Multi-function analog monitor (1)	Output frequency (default)	0 to 10 Vdc for 0 to 100% -10 to 10 Vdc for -100 to 100\% Resolution: 1/1000	
	AM	Multi-function analog monitor (2)	Output current (default)		
	AC	Analog common	0 V		
Safety Input	H1	Safety input 1	24 Vdc 8 mA . One or both open: Output disabled. Both closed: Normal operation. Internal impedance $3.3 \mathrm{k} \Omega$, switching time at least 1 ms .		
	H2	Safety input 2			
	HC	Safety input common	Safety input common		
Safety Monitor Output	DM +	Safety monitor output	Outputs status of Safe Disable function. Closed when both Safe Disable channels are closed.	48 Vdc or less, 50 mA or less	
	DM-	Safety monitor output common			

*1: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil. Diode must be rated higher than the circuit voltage.
*2: Refrain from assigning functions to terminals M1 and M2 that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A , resistive load).

Serial Communication Terminals (200 V/400 V Class)

Classification	Termi- nal	Signal Function	Description	Signal Level
MEMOBUS/ Modbus (RTU mode) Communications	R+	Communications input (+)	MEMOBUS/Modbus (RTU mode) communications: Use a RS-485 or RS-422 cable to connect the drive.	RS-422/485 MEMOBUS/Modbus (RTU mode) communications protocol 115.2 kbps (max.)
	R-	Communications input (-)		
	S+	Communications output (+)		
	S-	Communications output (-)		
	IG	Shield ground		V

Dimensions

Enclosures

Enclosures of standard products vary depending on the model. Refer to the table below.
200 V Class
ND : Normal Duty, HD : Heavy Duty

Max. Applicable	ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Motor Capacity (kW)	HD	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Enclosure Panel [UL Type 1]		Standard												Made to order*1							*2
Open-Chassis		Remove top cover of wall-mount enclosure for IP20 rating												IP00 standard						Order-made	

400 V Class
ND : Normal Duty, HD : Heavy Duty

 Open-Chassis \quad Remove top cover of wall-mount enclosure for IP20 rating IP00 standard
*1: Contact a Yaskawa for UL Type 1 Kit availability.
*2: UL Type 1 is not available for this capacity.

■Enclosure Panel IUL Type 1]

Figure 1

Figure 2

Figure 3
200 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)												Weight (kg)	Cooling
CIMR-A: 2 A :	Normal Duty	Heavy Duty		W	H	D	W1	H0	H1	H2	H3	D1	t1	t2	d		
0004	0.75	0.4	1	140	260	147	122	-	248	6	-	38	5	-	M5		Self cooling
0006	1.1	0.75														3.1	
0008	1.5	1.1															
0010	2.2	1.5														3.2	
0018	3.7	3.0		140	260		122	-	248	6	-	55	5	-			Fan cooled
0021	5.5	3.7				164								-		3.5	
0030	7.5	5.5				167								-		4.0	
0040	11	7.5												-			
0056	15	11		180	300	187	160	-	284	8	-	75	5	-		5.6	
0069	18.5	15	1	220	350	197	192	-	335	8	-	78	5	-	M6	8.7	
0081	22	18.5	2		365	197	192	350	335	8	15	78	5	-		9.7	
0110	30	22	3	254	534	258	195	400	385	7.5	134	100	2.3	2.3		23	
0138	37	30		279	614		220	450	435		164					28	
0169	45	37														41	
0211	55	45		329	730	283	260	550	535		180	110				42	
0250	75	55		456		330	25	05	30	5	55	130	2	2	10	83	
0312	90	75		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	88	
0360	110	90		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	108	

400 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)												Weight	
CIMR-A ${ }^{\text {a }}$ A	Normal Duty	Heavy Duty		W	H	D	W1	H0	H1	H2	H3	D1	t1	t2	d	(kg)	Cooling
0002	0.75	0.4	1	140	260	147	122	-	248	6	-	38	5	-	M5	3.2	Self cooling
0004	1.5	0.75															
0005	2.2 3.0	1.5														3.4	Fan cooled
0009	3.7	3.0		140	260	164	122	-	248	6	-	55	5	-			
0011	5.5	3.7														3.5	
0018	7.5	5.5				167										3.9	
0023	11	7.5															
0031	15	11		180	300		160	-	284	8	-	55	5	-		5.4	
0038	18.5	15		180	300	187						75				5.7	
0044	22	18.5		220	350	197	192	-	335	8	-	78	5	-	M6	8.3	
0058	30	22	3	254	465	258	195	400	385	7.5	65	100	2.3	2.3		23	
0072	37	30		279	515	258	220	450	435							27	
0088	45	37		329	630	258	260	510	495		120	105		3.2		39	
0103	55	45															
0139	75	55			730	283		550	535		180	110		2.3		45	
0165	90	75														46	
0208	110	90		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	87	
0250	132	110		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	106	
0296	160	132														112	
0362	185	160														117	

-Open-Chassis 【IP00】 Note: The enclosure type of figure 1 and figure 2 is IP20.

Figure 1

Figure 4

Figure 2

Figure 6

200 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)										Weight (kg)	Cooling
CIMR-AA 2 A:	Normal Duty	Heavy Duty		W	H	D	W1	H1	H2	D1	t1	t2	d		
0004	0.75	0.4	1	140	260	147	122	248	6	38	5	-	M5		Self cooling
0006	1.1	0.75												3.1	
0008	1.5	1.1													
0010	2.2	1.5												3.2	
0012	3	2.2													
0018	3.7	3		140	260	164	122	248	6	55	5	-		3.5	Fan cooled
0021	5.5	3.7													
0030	7.5	5.5				167								4	
0040	11	7.5													
0056	15	11		180	300	187	160	284	8	75	5	-		5.6	
0069	18.5	15		220	350	197	192	335	8	78	5	-	M6	8.7	
0081	22	18.5	2	220	365	197	192	335	8	78	5	-		9.7	
0110	30	22	3	250	400	258	195	385	75	100	23	23		21	
0138	37	30	3	275	450	258	220	435	7.5	100	2.3	2.3		25	
0169	45	37	4	325	550	283	260	535	7.5	110	2.3	2.3		37	
0211	55	45												38	
0250	75	55						680	12.5	130	3.2	3.2	M10	76	
0312	90	75			705	330								80	
0360	110	90		500	800	350	370	773	13	130	4.5	4.5	M12	98	
0415	110	110		500										99	

400 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)										$\begin{gathered} \hline \text { Weight } \\ (\mathrm{kg}) \\ \hline \end{gathered}$	Cooling
CIMR-A AA:-	Normal Duty	Heavy Duty		W	H	D	W1	H1	H2	D1	t1	t2	d		
0002	0.75	0.4	1	140	260	147	122	248	6	38	5	-	M5	3.2	Self cooling
0004	1.5	0.75													
0005	2.2	1.5													
0007	3	2.2		140	260	164	122	248	6	55	5	-		3.4	$\begin{aligned} & \text { Fan } \\ & \text { cooled } \end{aligned}$
0009	3.7	3												3.5	
0011	5.5	3.7													
0018	7.5	5.5		140	260	167	122	248	6	55	5				
0023	11	7.5		140	260	167	122	248	6	55	5	-		3.9	
0031	15	11				167			8	55	5	-		5.4	
0038	18.5	15		180	300	187	160	284	8	75	5	-		5.7	
0044	22	18.5		220	350	197	192	335	8	78	5	-	M6	8.3	
0058	30	22	3	250	400	258	195	385	7.5	100	2.3	2.3		21	
0072	37	30		275	450		220	435						25	
0088	45	37		325	510	258	260	495	7.5	105		3.2		36	
0103	55	45													
0139	75	55	4	325	550	283	260	535		110		2.3		41	
0165	90	75												42	
0208	110	90		450	705	330	325	680	12.5	130	3.2	3.2	M10	79	
0250	132	110		500	800	350	370	773	13	130	4.5	4.5	M12	96	
0296	160	132												102	
0362	185	160												107	
0414	220	185		500	950	370	370	923	13	135				125	
0515	250	220	5	670	1140		440	1110	15	150	4.5	4.5	M12	221	
0675	355	315													
0930	500	450	6	1250	1380	370	1100	1345	15	150	4.5	4.5	M12	545	
1200	630	560												555	

Fully-Enclosed Design and Drive Watts Loss Data

The Open-Chassis type drive can be installed in a fully-enclosed panel.

An open-chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to $50^{\circ} \mathrm{C}$.
The heatsink can alternatively be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up.
Current derating or other steps to ensure cooling are required at $50^{\circ} \mathrm{C}$

- Cooling Design for Fully-Closed Enclosure Panel •Mounting the External Heatsink

*: Enclosure panel (CIMR-A $\square 2$ A0004 to 0081, CIMR-A $\square 4$ A0002 to 0044) can be installed with the top and bottom covers removed.
- Ventilation Space

For installing the drive with capacity of 200 V class 22 kW or 400 V class 22 kW , be sure to leave enough clearance during installation for suspension eye bolts on both side of the unit and main circuit wiring for maintenance.

O Drive Watts Loss Data

200 V Class Normal Duty Ratings

Model NumberCIMR-A 2 2A		0004	0006	0008	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max. Applicable Motor Capacity kW		0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Rated Output Current A		3.5	6	8	9.6	12	17.5	21	30	40	56	69	81	110	138	169	211	250	312	360	415
Carrier Frequency kHz		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Watts Loss*	Heatsink W	18	31	43	57	77	101	138	262	293	371	491	527	718	842	1014	1218	1764	2020	2698	2672
	Internal W	47	51	52	58	64	67	83	117	144	175	204	257	286	312	380	473	594	665	894	954
	Total Watts Loss W	65	82	95	115	141	168	221	379	437	546	696	784	1004	1154	1394	1691	2358	2685	3592	3626

400 V Class Normal Duty Ratings

Model Number		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
CIMR-A	4A																										
Max. Applicable Motor Capacity kW		0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Rated Output Current A		2.1	4.1	5.4	6.9	8.8	11.1	17.5	23	31	38	44	58	72	88	103	139	165	208	250	296	362	414	515	675	930	12
Carrier Frequency kHz		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Watts Loss*	Heatsink W	20	32	45	62	66	89	177	216	295	340	390	471	605	684	848	1215	1557	1800	2379	2448	3168	3443	4850	4861	8476	8572
	Internal W	48	49	53	59	60	73	108	138	161	182	209	215	265	308	357	534	668	607	803	905	1130	1295	1668	2037	2952	3612
	Total Watts Loss W	68	81	98	121	126	162	285	354	456	522	599	686	870	992	1205	1749	2225	2407	3182	3353	4298	4738	6518	6898	11428	12184

200 V Class Heavy Duty Ratings

400 V Class Heavy Duty Ratings

Model Number		0002	0004	0005	0007	0009	0011	0018	0023	0031	0038	0044	0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
Max. Applicable Motor Capacity kW		0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	315	450	560
Rated Output Current A		1.8	3.4	4.8	5.5	7.2	9.2	14.8	18	24	31	39	45	60	75	91	112	150	180	216	260	304	370	450	605	810	1090
Carrier Frequency kHz		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	5	5	5	5	5	5	5	2	2	2	2
Watts Loss*	Heatsink W	16	25	37	48	53	68	135	150	208	263	330	348	484	563	723	908	1340	1771	2360	2391	3075	3578	3972	4191	6912	7626
	Internal W	45	46	49	53	55	61	86	97	115	141	179	170	217	254	299	416	580	541	715	787	985	1164	1386	1685	2455	3155
	Total Watts Loss W	61	71	86	101	108	129	221	247	323	404	509	518	701	817	1022	1324	1920	2312	3075	3178	4060	4742	5358	5876	9367	10781

[^3]Contact your Yaskawa or nearest agent when not calculating watts loss in the above conditions

Attachment for External Heatsink
When the heatsink is installed outside the drive, additional attachments are required. Installing the additional attachments will extend the width and height of the drive.
Additional attachments are not required for models CIMR-A \square 2 A0110 and above, and CIMR-A $\square 4$ A0058 and above because installing a heatsink outside the drive can be performed on these models by replacing their standard mounting feet.
Contact Yaskawa if an instruction manual is needed.
Note: 1. Contact Yaskawa for information on attachments for earlier models.
2. To meet UL standards, covers are required for each capacitor for models CIMR-A $\square 2$ A0110 to 2A0415, CIMR-A $\square 4$ A0058 to 4A1200. Contact Yaskawa for information on capacitor covers.

200 V Class

Model			mens	(mm)			
CIMR-A	W	H	W1	H1	D1	D2	Code No.
0004	158	294	122	280	109	36.4	EZZ020800A
0006							
0008							
0010							
0012							
0018					109	53.4	
0021							EZZ020800B
0030					112	53.4	
0040							
0056	198	329	160	315	112	73.4	EZZO20800C
0069							
0081	238	380	192	362	119	76.4	EZZ020800D

400 V Class

Model	Dimension (mm)						Code No.
CIMR-A ${ }^{-} 44^{-\cdots-\cdots}$	W	H	W1	H1	D1	D2	
0002	158	294	122	280	109	36.4	EZZO20800A
0004							
0005							
0007							
0009					109	53.4	
0011							EZZO20800B
0018					112	53.4	
0023							
0031	198	329	160	315	112	53.4	F77020800C
0038					112	73.4	
0044	238	380	192	362	119	76.4	EZZO20800D

Panel Modification for External Heatsink

Modification Figure 3

400 V Class

$\begin{gathered} \text { Model } \\ \text { CIMR-A:.:4A } \\ \vdots .-\cdots:-1 \\ \hline \end{gathered}$	Modification Figure	Dimensions (mm)												
		W	H	W1	W2	W3	H1	H2	H3	H4	H5	A	B	d1
0002	1	158	294	122	9	9	280	8.5	8.5	7	-	140	263	M5
0004														
0005														
0007														
0009														
0011														
0018														
0023														
0031		198	329	160	10	9	315	17.5	10.5	7	-	180	287	
0038		198	329	160	10	9	315	17.5	10.5	7	-	180	287	
0044		238	380	192	14	9	362	13	8	9	-	220	341	M6
0058	2	250	400	195	195	8	385	8	75	8	75	234	369	M6
0072		275	450	220		8	435	8	7.5	8	7.5	259	419	M6
0088		325	510	260	24.5	8	495	8	7.5	8	7.5	309	479	M6
0103														
0139			550				535						519	
0165			550				535							
0208		450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
0250														
0296		500	800	370	57	8	773	16	14	17	13	484	740	M12
0362														
0414		500	950	370	57	8	923	16	14	17	13	484	890	M12
0515	3	670	1140	440	107	8	1110	19	15	19	15	654	1072	M12
0675	3	670	1140	440	107	8	1110	19	15	19	15	654	1072	M12
0930	4	1250	1380	1100	67	8	1345	19	20	19	15	1234	1307	M12
1200	4	1250	1380	1100	67	8	1345	19	20	19	15	1234	1307	M12

200 V Class

ModelCIMR-A: i.2A$\vdots----. \vdots$	Modification Figure	Dimensions (mm)												
		W	H	W1	W2	W3	H1	H2	H3	H4	H5	A	B	d1
0004	(1)	158	294	122	9	9	280	8.5	8.5	7	-	140	263	M5
0006														
0008														
0010														
0012														
0018														
0021														
0030														
0040														
0056		198	329	160	10	9	315	17.5	10.5	7	-	180	287	M5
0069		238	380	192	14	9	362	13	8	9	-	220	341	,
0081														
0110	2	250	400	195	19.5	8	385	8	7.5	8	7.5	234	369	9 M6
0138		275	450	220			435					259	419	
0169		325	550	260	24.5	8	535	8	7.5	8	7.5	309	519	
0211		325	550	260										
0250		450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
0312		450	705	325										
0360		500	800	370	57	8	773	16	14	17	13	484	740	M12
0415														

Modification Figure 4
$\xrightarrow{216}$ (lor cover

* : Panel opening needed to replace an air filter installed to the bottom of the drive. The opening should be kept as small as possible.
Drill hole $\times 8$ (d1)

Power Supply	Name	Purpose	Model, Manufacturer	Page
	Ground Fault Interrupter (GFI)	Always install a GFI on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of shortcircuit, and to protect the drive from ground faults that could result in electric shock or fire. Note: When a GFI is installed for the upper power supply system, an MCCB can be used instead of a GFI. Choose a GFI designed to minimize harmonics specifically for AC drives. Use one GFI per drive, each with a current rating of at least 30 mA .	NV series* by Mitsubishi Electric Corporation NS Series* by Schneider Electric	36
Fusible Disconnect Ground Fault Interrupter, Circuit Breaker (MCCB)	Circuit Breaker	Always install a circuit breaker on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of a short-circuit.	NF series* by Mitsubishi Electric Corporation	36
	Magnetic Contactor	Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used.	SC seres** by Fuif Electric FA Components \& Systems Co., Ltd	37
	Surge Protector	Absorbs the voltage surge from switching of electro-magnetic contactors and control relays. Install a surge protector to the magnetic contactors and control relays as well as magnetic valves and magnetic braking coil.	DCR2 series RFN series by Nippon ChemiCon Corporation	37
	DC Reactor	Improve the input power ratio of the drive. The DC reactor is a built-in model of 22 kW or more. Option: 18.5 kW or less.	UZDA series	38
	AC Reactor	- Used for harmonic current suppression and total improving power factor. Should be used if the power supply capacity is larger than 600 kVA . - Suppresses harmonic current - Improves the power factor of the input power supply	UZBA series	40
	Zero Phase Reactor	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides.	$\begin{aligned} & \text { F6045GB } \\ & \text { F1108GB } \\ & \text { by Hitachi Metals, Ltd. } \end{aligned}$	42
AC Reactor	Fuse / Fuse Holder	Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Be sure to use a fuse or fuse holder for the CIMR-A $\square 4 \mathrm{~A} 0930$ or the CIMR-A \square 4A1200. Note: Refer to the instruction manual for information on UL approval.	CR2LS series CR6L series CM, CMS series by Fuij Electric FA Components \& Systems Co., Ltd	43
	Capacitor-Type Noise Filter	Reduces noise from the line that enters into the drive input power system. The noise filter can be used in combination with a zero-phase reactor. Note: Available for drive input only. Do not connect the noise filter to the output terminals.	3XYG 1003 by Okaya Electric Industries Co., Ltd.	43
Zero Phase Reactor Fuse	Input Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Note: For CE Marking (EMC Directive) compliant models, refer to A1000 Technical Manual.	LNFD series LNFB series FN series	44
Input Noise Filter	Output Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LF series by NEC Tokin Corporation	46
	Isolator	Isolates the drive I/O signal, and is effective in reducing inductive noise.	DGP2 series	47
	Braking Resistor	Used to shorten the deceleration time by dissipating regenerative energy through a resistor. Usage $3 \% \mathrm{ED}$, requires a separate attachment.	ERF150WJ series CF120-B579 series	48
	Attachment for Braking Resistor	A braking resistor can be attached to the drive.	EZZ020805A	53
DC Reactor	External Heatsink Attachment for Braking Unit	Use the external heatsink attachment for installation with the heatsink outside the enclosure.	EZZO21711A	53
	Braking Resistor Unit	Used to shorten the deceleration time by dissipating regenerative energy through a resistor unit (10% ED). A thermal overload relay is built in (10% ED).	LKEB series	48
Momentary	Braking Unit	Shortened deceleration time results when used with a Braking Resistor Unit.	CDBR series	48
	24 V Power Supply	Provides power supply for the control circuit and option boards. Note: Parameter settings cannot be changed when the drive is operating solely from this power supply.	PS-A10LB (200 V class) PS-A10HB (400 V class)	47
- Braking Resistor Unit	VS System Module	System control device that enables optimum system configuration by combining modules for automatic control system.	JGSM series	54
- Braking Unit USB Copy Unit (RJ-45/USB adapter) DriveWizardPlus DriveWorksEZ	USB Copy Unit (RJ-45/ USB compatible plug)	Can copy parameter settings easily and quickly to be later transferred to another drive. - Adapter for connecting the drive to the USB port of a PC	JVOP-181	57
	PC Cable	Connect the drive and PC when using DriveWizard or DriveWorksEZ. The cable length must be 3 m or less.	Commercially available USB2.0 A/B cable.	57
880	LCD Operator	For easier operation when using the optional LCD operator. Allows for remote operation. Includes a Copy function for saving drive settings.	JVOP-180	56
Noise Filter	LCD Operator Extension Cable	Cable for connecting the LCD operator.	WV001: 1 m WV003: 3 m	56
put side)	Momentary Power Loss Recovery Unit	Ensures continuous drive operation for a power loss of up to 2 s .	P0010 Type (200 V class) P0020 Type (400 V class)	47
,	Frequency Meter, Current Meter	Allows the user to set and monitor the frequency, current, and voltage using an external device.	DCF-6A	58
Zero Phase Reactor	Variable Resistor Board ($20 \mathrm{k} \Omega$)		ETX3120	58
,	Frequency Setting Potentiometer (2 k Ω)		RH000739	58
	Frequency Meter Adjusting Potentiometer ($20 \mathrm{k} \Omega$)		RH000850	58
Low Voltage Manual Load Switch	Control Dial for Frequency Setting Potentiometer		CM-3S	58
	Output Voltage Meter		SCF-12NH	59
	Voltage Transformer		UPN-B	
	Attachment for External Heatsink	Required for heatsink installation. Current derating may be needed when using a heatsink.	-	33
	Low Voltage Manual Load Switch	Prevents shock from the voltage created on the terminals board from a coasting synchronous motor.	AICUT, LB series* by Aichi Electric Works $\mathrm{Co} ., \mathrm{Lt}$ Ld	-

Option Cards

These option cards are compliant with the RoHS Directive.

Type	Name	Model		Function	
			Enables high-precision and high-resolution analog speed reference setting. -Input signal level: -10 to +10 Vdc (20 k Ω) 4		

Note: 1. Each communication option card requires a separate configura- $\quad *$: Available in the A1000 software versions PRG: 1020 and later.

Ground Fault Interrupter, Circuit Breaker

Device selection is based on the motor capacity.
Make sure that the rated breaking capacity is higher than the shortcircuit current for the power supply.
Protect the wiring to withstand the short-circuit current for the power supply using a combination of fuses if the rated breaking insufficient, such as when the power transformer capacity is large.

Ground Fault Interrupter
[Mitsubishi Electric Corporation]

Circuit Breaker
[Mitsubishi Electric Corporation]

200 V Class

Motor Capacity (kW)	Ground Fault Interrupter						Circuit Breaker					
	Without Reactor*1			With Reactor*2			Without Reactor*1			With Reactor*2		
	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3
0.4	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.75	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
1.5	NV32-SV	15	10/10	NV32-SV	10	10/10	NF32-SV	15	7.5/7.5	NF32-SV	10	7.5/7.5
2.2	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
3.7	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
5.5	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15
7.5	NV125-SV	60	50/50	NV63-SV	50	15/15	NF125-SV	60	50/50	NF63-SV	50	15/15
11	NV125-SV	75	50/50	NV125-SV	75	50/50	NF125-SV	75	50/50	NF125-SV	75	50/50
15	NV250-SV	125	85/85	NV125-SV	100	50/50	NF250-SV	125	85/85	NF125-SV	100	50/50
18.5	NV250-SV	150	85/85	NV250-SV	125	85/85	NF250-SV	150	85/85	NF250-SV	125	85/85
22	* 4	-	-	NV250-SV	150	85/85	* 4	-	-	NF250-SV	150	85/85
30	* 4	-	-	NV250-SV	175	85/85	* 4	-	-	NF250-SV	175	85/85
37	* 4	-	-	NV250-SV	225	85/85	*4	-	-	NF250-SV	225	85/85
45	* 4	-	-	NV400-SW	250	85/85	* 4	-	-	NF400-CW	250	50/25
55	*4	-	-	NV400-SW	300	85/85	*4	-	-	NF400-CW	300	50/25
75	*4	-	-	NV400-SW	400	85/85	*4	-	-	NF400-CW	400	50/25
90	*4	-	-	NV630-SW	500	85/85	*4	-	-	NF630-CW	500	50/25
110	* 4	-	-	NV630-SW	600	85/85	*4	-	-	NF630-CW	600	50/25

$* 1$: The AC or DC reactor is not connected to the drive.
*2: The AC or DC reactor is connected to the drive.
*3: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity
*4: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor.
400 V Class

Motor Capacity (kW)	Ground Fault Interrupter						Circuit Breaker					
	Without Reactor*1			With Reactor*2			Without Reactor*1			With Reactor*2		
	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs*3
0.4	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.75	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	5	2.5/2.5	NF32-SV	5	2.5/2.5
1.5	NV32-SV	10	5/5	NV32-SV	10	5/5	NF32-SV	10	2.5/2.5	NF32-SV	10	2.5/2.5
2.2	NV32-SV	15	5/5	NV32-SV	10	5/5	NF32-SV	15	2.5/2.5	NF32-SV	10	2.5/2.5
3.7	NV32-SV	20	5/5	NV32-SV	15	5/5	NF32-SV	20	2.5/2.5	NF32-SV	15	2.5/2.5
5.5	NV32-SV	30	5/5	NV32-SV	20	5/5	NF32-SV	30	2.5/2.5	NF32-SV	20	2.5/2.5
7.5	NV32-SV	30	5/5	NV32-SV	30	5/5	NF32-SV	30	2.5/2.5	NF32-SV	30	2.5/2.5
11	NV63-SV	50	7.5/7.5	NV63-SV	40	7.5/7.5	NF63-SV	50	7.5/7.5	NF63-SV	40	7.5/7.5
15	NV125-SV	60	25/25	NV63-SV	50	7.5/7.5	NF125-SV	60	25/25	NF63-SV	50	7.5/7.5
18.5	NV125-SV	75	25/25	NV125-SV	60	25/25	NF125-SV	75	25/25	NF125-SV	60	25/25
22	*5	-	-	NV125-SV	75	25/25	*5	-	-	NF125-SV	75	25/25
30	*5	-	-	NV125-SV	100	25/25	*5	-	-	NF125-SV	100	25/25
37	*5	-	-	NV250-SV	125	36/36	*5	-	-	NF250-SV	125	36/36
45	*5	-	-	NV250-SV	150	36/36	*5	-	-	NF250-SV	150	36/36
55	*5	-	-	NV250-SV	175	36/36	*5	-	-	NF250-SV	175	36/36
75	*5	-	-	NV250-SV	225	36/36	*5	-	-	NF250-SV	225	36/36
90	*5	-	-	NV400-SW	250	42/42	*5	-	-	NF400-CW	250	25/13
110	*5	-	-	NV400-SW	300	42/42	*5	-	-	NF400-CW	300	25/13
132	*5	-	-	NV400-SW	350	42/42	*5	-	-	NF400-CW	350	25/13
160	*5	-	-	NV400-SW	400	42/42	*5	-	-	NF400-CW	400	25/13
185	*5	-	-	NV630-SW	500	42/42	*5	-	-	NF630-CW	500	36/18
220	*5	-	-	NV630-SW	630	42/42	*5	-	-	NF630-CW	630	36/18
250	*5	-	-	NV630-SW	630	42/42	*5	-	-	NF630-CW	630	36/18
315	*5	-	-	NV800-SEW	800	42/42	*5	-	-	NF800-CEW	800	36/18
355	*5	-	-	NV800-SEW	800	42/42	*5	-	-	NF800-CEW	800	36/18
450	*5	-	-	NV1000-SB	1000	85	*5	-	-	NF1000-SEW	1000	85/43
500	*5	-	-	NV1200-SB	1200	85	*5	-	-	NF1250-SEW	1250	85/43
560	*5	-	-	NS1600H*4	1600	70	*5	-	-	NF1600-SEW	1600	85/43
630	*5	-	-	NS1600H*4	1600	70	*5	-	-	NF1600-SEW	1600	85/43

[^4]*2: The AC or DC reactor is connected to the drive.
*3: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity
*4: NS series by Schneider Electric.

Magnetic Contactor

Base device selection on motor capacity．

Magnetic Contactor
［Fuji Electric FA Components \＆Systems Co．，Ltd］
200 V Class

Motor Capacity (kW)	Without Reactor＊1		With Reactor＊2	
	Model	Rated Current（A）	Model	Rated Current（A）
0.4	SC－03	11	SC－03	11
0.75	SC－05	13	SC－03	11
1.5	SC－4－0	18	SC－05	13
2.2	SC－N1	26	SC－4－0	18
3.7	SC－N2	35	SC－N1	26
5.5	SC－N2S	50	SC－N2	35
7.5	SC－N3	65	SC－N2S	50
11	SC－N4	80	SC－N4	80
15	SC－N5	93	SC－N4	80
18.5	SC－N5	93	SC－N5	93
22	$*$	-	SC－N6	125
30	$*$	-	SC－N7	152
37	$*$	-	SC－N8	180
45	$*$	-	SC－N10	220
55	$*$	-	SC－N11	300
75	$*$	-	SC－N12	400
90	$*$	-	SC－N12	400
110	$*$	-	SC－N14	600

＊： 200 V models 22 kW and above come with a built－in DC reactor that improves the power factor．

Wiring a Magnetic Contactor in Parallel

Note：When wiring contactors in parallel，make sure wiring lengths are the same to keep current flow even to the relay terminals．

400 V Class

Motor Capacity （kW）	Without Reactor＊1		With Reactor＊2	
	Model	Rated Current（A）	Model	Rated Current（A）
0.4	SC－03	7	SC－03	7
0.75	SC－03	7	SC－03	7
1.5	SC－05	9	SC－05	9
2.2	SC－4－0	13	SC－4－0	13
3.7	SC－4－1	17	SC－4－1	17
5.5	SC－N2	32	SC－N1	25
7.5	SC－N2S	48	SC－N2	32
11	SC－N2S	48	SC－N2S	48
15	SC－N3	65	SC－N2S	48
18.5	SC－N3	65	SC－N3	65
22	＊5	－	SC－N4	80
30	＊5	－	SC－N4	80
37	＊5	－	SC－N5	90
45	＊5	－	SC－N6	110
55	＊5	－	SC－N7	150
75	＊5	－	SC－N8	180
90	＊5	－	SC－N10	220
110	＊5	－	SC－N11	300
132	＊5	－	SC－N11	300
160	＊5	－	SC－N12	400
185	＊5	－	SC－N12	400
220	＊5	－	SC－N14	600
250	＊5	－	SC－N14	600
315	＊5	－	SC－N16	800
355	＊5	－	SC－N16	800
450	＊5	－	SC－N14 $\times 2 * 3$	600＊4
500	＊5	－	SC－N14 $\times 2 * 3$	600＊4
560	＊5	－	SC－N16 $\times 2 * 3$	800＊4
630	＊5	－	SC－N16 $\times 2 * 3$	800＊4

＊1：The AC or DC reactor is not connected to the drive．
＊2：The AC or DC reactor is connected to the drive．
＊3：When two units are connected in parallel．
＊4：Rated current for a single unit．
＊5： 400 V models 22 kW and above come with a built－in DC reactor that improves the power factor．

Dimensions（mm）

Weight： 22 g
Model：DCR2－50A22E Model：DCR2－10A25C
［Nippon Chemi－Con Corporation】
Product Line

Peripheral Devices			Model	Specifications	$\begin{gathered} \text { Code No. } \\ \hline \text { C002417 } \end{gathered}$
200 to 230 V		Large－Capacity Coil（other than relay）	DCR2－50A22E	$220 \mathrm{Vac} 0.5 \mu \mathrm{~F}+200 \Omega$	
200 to 240 V	Control Relay	MY2，MY3［Omron Corporation】 MM2，MM4 IOmron Corporation】 HH22，HH23［Fuji Electric FA Components \＆Systems CO．，Ltd］	DCR2－10A25C	$250 \mathrm{Vac} 0.1 \mu \mathrm{~F}+100 \Omega$	C002482
380 to 480 V RFN3AL504KD $1000 \mathrm{Vdc} 0.5 \mu \mathrm{~F}+220 \Omega$					C002630

Peripheral Devices and Options (continued)

DC Reactor (UZDA-B for DC circuit)
Base device selection on motor capacity.
Lead Wire Type

Dimensions (mm)

Figure 1

Note: Reactor recommended for power supplies larger than 600 kVA .

Connection Diagram

Figure 2

200 V Class

Motor Capacity (kW)	Current (A)	Inductance(mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	$\begin{aligned} & \text { Watt } \\ & \text { Loss } \\ & \text { (W) } \end{aligned}$	
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.			
0.4	5.4	8	X010048	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
0.75	5.4	8	X010048	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
1.5	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
2.2	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
3.7	18	3	X010049	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
5.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
7.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11	72	0.5	X010051	2	105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
15	72	0.5	X010051	2	105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
18.5	90	0.4	X010176	2	133	120	52.5	117	86	80	25	-	M6	M8	6.5	45	30
22*2	105	0.3	300-028-140	3	133	120	52.5	117	86	80	25	-	M6	M10	8	55	50
22 to 110								ilt-in									

*1: Cable: Indoor PVC $\left(75^{\circ} \mathrm{C}\right)$, ambient temperature $45^{\circ} \mathrm{C}$, 3 lines max.
*2: Select a motor of this capacity when using a CIMR-A $\square 2$ A0081.
400 V Class

Motor Capacity (kW)	Current (A)	Inductance(mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)	Wire Gauge* (mm^{2})
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.			
0.4	3.2	28	X010052	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
0.75	3.2	28	X010052	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
1.5	5.7	11	X010053	1	90	-	-	60	80	-	-	32	M4	-	1	11	2
2.2	5.7	11	X010053	1	90	-	-	60	80	-	-	32	M4	-	1	11	2
3.7	12	6.3	X010054	2	86	80	36	76	60	55	18	-	M4	M5	2	16	2
5.5	23	3.6	X010055	2	105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
7.5	23	3.6	X010055	2	105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
11	33	1.9	X010056	2	105	95	51	93	64	90	26	-	M6	M6	4	26	8
15	33	1.9	X010056	2	105	95	51	93	64	90	26	-	M6	M6	4	26	8
18.5	47	1.3	X010177	2	115	125	57.5	100	72	90	25	-	M6	M6	6	42	14
22*2	56	1	300-028-141	3	133	105	52.5	117	86	80	25	-	M6	M6	7	50	22
22 to 630								uilt-in									

*1: Cable: Indoor PVC $\left(75^{\circ} \mathrm{C}\right)$, ambient temperature $45^{\circ} \mathrm{C}$, 3 lines max.
*2: Select a motor of this capacity when using a CIMR-A $\square 4$ A0044.

Terminal Type

Dimensions (mm)

Figure 1

Figure 2

200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.		
0.4	5.4	8	300-027-130	1	85	-	-	81	74	-	-	32	M4	M4	0.8	8
0.75																
1.5	18	3	300-027-131	2	86	84	36	101	60	55	18	-	M4	M4	2	18
2.2																
3.7																
5.5	36	1	300-027-132		105	94	46	129	64	80	26	-	M6	M4	3.2	22
7.5																
11	72	0.5	300-027-133		105	124	56	135	64	100	26	-	M6	M6	4.9	29
15																
18.5	90	0.4	300-027-139		133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.		
0.4	3.2	28	300-027-134	1	85	-	-	81	74	-	-	32	M4	M4	0.8	9
0.75					85	-						32		N4	0.8	
1.5	5.7	11	300-027-135		90	-	-	88	80	-	-	32	M4	M4	1	11
2.2					90		-	88	80	-	-	32	M4	M4	1	11
3.7	12	6.3	300-027-136	2	86	84	36	101	60	55	18	-	M4	M4	2	16
5.5	23	3.6	300-027-137		105	104	46	118	64	80	26	-	M6	M4	3.2	27
7.5																
11	33	1.9	300-027-138		105	109	51	129	64	90	26	-	M6	M4	4	26
15					105											
18.5	47	1.3	300-027-140		115	142.5	57.5	136	72	90	25	-	M6	M5	6	42

Peripheral Devices and Options (continued)

AC Reactor (UZBA-B for 50/60 Hz Input)

Base device selection on motor capacity.

Lead Wire Type

Dimensions (mm)
 specifications

Figure 1

Connection Diagram

AC reactor

Note: When using low noise type drives (high-carrier frequency of 2.5 kHz or more), do not connect an AC reactor to the output side (U, V, W) of the drive.

Hanging bolt $\times 2(\mathrm{M} 8) \quad$ o Terminal $\times 6(\mathrm{M})$ Terminal $\times 6(\mathrm{M})$

Mtg. hole $\times 4$ (J)
Figure 3

200 V Class

Motor Capacity		Inductance	Code No.	Figure							$\begin{aligned} & \text { ensio } \\ & (\mathrm{mm}) \end{aligned}$							Weight	Watt Loss
(kW)					A	B	B1	C	D	E	F	H	1	J	K	L	M		(W)
3.7	20	0.53	X002491	1	130	88	114	105	50	70	130	22	3.2	M6	11.5	7	M5	3	35
5.5	30	0.35	X002492				119								9			3	45
7.5	40	0.265	X002493			98	139			80					11.5		M6	4	50
11	60	0.18	X002495		160	105	147.5	130	75	85	160	25	2.3	M6	10	7	M6	6	65
15	80	0.13	X002497		180	100	155	150	75	80	180	25	2.3	M6	10	7	M8	8	75
18.5	90	0.12	X002498				150												90
22	120	0.09	X002555				155										M10		
30	160	0.07	X002556		210	100	170	175	75	80	205	25	3.2	M6	10	7	M10	12	100
37	200	0.05	X002557			115	182.5			95								15	110
45	240	0.044	X002558		240	126	218	215	150	110	240	25	3.2	M8	8	7	M10	23	125
55	280	0.039	X002559													10	M12		130
75	360	0.026	X002560		270	162	241	230	150	130	260	40	5	M8	16	10	M12	32	145
90	500	0.02	X010145		330	162	281	270	150	130	320	40	4.5	M10	16	10	M12	55	200
110	500	0.02	X010145	2															

400 V Class

Motor Capacity	Current	Inductance	Code No.		$\begin{gathered} \hline \text { Dimensions } \\ (\mathrm{mm}) \\ \hline \end{gathered}$													Weight (kg)	Watt Loss (W)
(kW)	(A)	(mH)		Figure	A	B	B1	C	D	E	F	H	1	J	K	L	M		
7.5	20	1.06	X002502	1	160	90	115	130	75	70	160	25	2.3	M6	10	7	M5	5	50
11	30	0.7	X002503			105	132.5			85								6	65
15	40	0.53	X002504		180	100	140	150	75	80	180	25	2.3	M6	10	7	M6		90
18.5	50	0.42	X002505				145											8	
22	60	0.36	X002506				150											8.5	
30	80	0.26	X002508		210	100	150	175	75	80	205	25	3.2	M6	10	7	M8	12	95
37	90	0.24	X002509			115	177.5			95								15	110
45	120	0.18	X002566		240	126	193	205	150	110	240	25	3.2	M8	8	10	M10	23	130
55	150	0.15	X002567				198												150
75	200	0.11	X002568		270	162	231	230	150	130	260	40	5	M8	16	10	M10	32	135
90	250	0.09	X002569																
110	250	0.09	X002569				246										M12		
132	330	0.06	X002570	2	320	165	253	275	150	130	320	40	4.5	M10	17.5	12	M12	55	200
160	330	0.06	X002570																
185	490	0.04	X002690		330	176	293	275	150	150	320	40	4.5	M10	13	12	M12	60	340
220	490	0.04	X002690																
250	490	0.04	X002690																
315	660	0.03	300-032-353	3	330	216	353	285	150	185	320	40	4.5	M10	22	12	M16	80	300
355	660	0.03	300-032-353																
450	490*1	0.04	X002690 $\mathrm{2}^{* 2}$	2	330	176	293	275	150	150	320	40	4.5						340
500	490*1	0.04	X002690 $\times 2 * 2$											M10	13	12	M12	60	
560	660*1	0.03	300-032-353 $\times 2 \times 2$	3	330	216	353	285	150	185	320	40	4.5	M10	22	12	M16	80	300
630	660*1	0.03	300-032-353 $\times 2 * 2$													12	M16		

*1: Rated current for a single unit.
*2: When two units are connected in parallel.

Terminal Type

Dimensions (mm)

Mounting hole Ψ
specifications
Figure 1

Figure 2

200 V Class

$\begin{array}{\|c\|} \hline \text { Motor } \\ \text { Capacity } \\ \text { (kW) } \\ \hline \end{array}$	Current (A)	Inductance (mH)	Code No.	Figure	$\begin{aligned} & \hline \text { Dimensions } \\ & (\mathrm{mm}) \end{aligned}$													Weight (kg)	Watt Loss (W)
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
0.4	2.5	4.2	X002553	1	120	71	-	120	40	50	105	20	2.3	M6	10.5	7	M4	2.5	15
0.75	5	2.1	X002554																
1.5	10	1.1	X002489		130	88		130	50	70	130	22	3.2		9			3	25
2.2	15	0.71	X002490		130	88		130	50	70	130	22	3.2		9			3	30
3.7	20	0.53	300-027-120	2	135	88	140	130	50	70	130	22	3.2		9	7		3	35
5.5	30	0.35	300-027-121				150												45
7.5	40	0.265	300-027-122		135	98	160	140	50	80	130	22	3.2		9		M5	4	50
11	60	0.18	300-027-123		165	105	185	170	75	85	160	25	2.3		10		M6	6	65
15	80	0.13	300-027-124		185	100	180	195	75	80	180	25	2.3		10		M6	8	75
18.5	90	0.12	300-027-125																90

400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	$\begin{gathered} \hline \text { Dimensions } \\ (\mathrm{mm}) \end{gathered}$													Weight (kg)	WattLoss
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
0.4	1.3	18	X002561	1	120	71	-	120	40	50	105	20	23	M6	10.5	7	M4	25	15
0.75	2.5	8.4	X002562																
1.5	5	4.2	X002563		130	88		130	50	70	130	22	3.2		9			3	25
2.2	7.5	3.6	X002564																
3.7	10	2.2	X002500																40
5.5	15	1.42	X002501			98				80								4	50
7.5	20	1.06	300-027-126	2	165	90	160	155	75	70	160	25	2.3		10	7	M4	5	50
11	30	0.7	300-027-127			105	175			85								6	65
15	40	0.53	300-027-128		185	100	170	185		80	180						M5	8	90
18.5	50	0.42	300-027-129							80							M5	8	90

Peripheral Devices and Options (continued)

Zero Phase Reactor

Zero-phase reactor should match wire gauge.*
*: Current values for wire gauges may vary based on electrical codes.
The table below lists selections based on Japanese electrical standards and Yaskawa's
ND rating. Contact Yaskawa for questions regarding UL.

Connection Diagram

Compatible with the input and output side of the drive.

Finemet Zero-Phase Reactor to Reduce Radio Noise Note: Finemet is a registered trademark of Hitachi Metals, Ltd.

Example: Connection to output terminal Enlarged view of V/T2-phase wiring

Diagram a

All wires (U/T1, V/T2, W/T3) should pass through the four cores of the reactor in series without winding. Diagram b

Separate each terminal lead for U/T1, V/T2, and W/T3 in half, passing one half of the wires through a set of four cores and the other half through the other set of four cores as shown. Diagram c

Dimensions (mm)

Model F6045GB
200 V Class

Motor		000				ro Phas	e Reactor			
Capacity	Recomm Gauge	mended (mm^{2})		Input Side				Output Sid		
(kW)	Input Side	OOtatiSide	Model	Code No.	Qty.	Diagram	Model	Code No.		Diagram
0.4										
0.75	2	2								
2.2			F6045GB	FIL001098	1	a	F6045GB	FlL001098	1	a
3.7	3.5	3.5								
5.5	5.5	3.5								
7.5	8	8	F11080GB	FIL001097	1	a	F11080GB	FlL001097	1	a
11	14	14								
15	22	14								
18.5	30	22	F6045GB	FIL001098			F6045GB	FlL001098		
22	38	30								
30	38	38								
37	60	60			4	b			4	b
45	80	80	F11080GB	FIL001097			F11080GB	FLL001097		
55	100	50×2P								
75	80×2P	80×2P								
90	80×2P	$80 \times 2 \mathrm{P}$	F200160PB	300-001-041			F200160PB	300-001-041		
110	*	*								

*: Model 2A0360: $100 \times 2 \mathrm{P}$, model 2 A0415: $125 \times 2 \mathrm{P}$

Model F11080GB

Model F200160PB

Motor Capacity (kW)	A1000 Recommended Gauge $\left(\mathrm{mm}^{2}\right)$		Zero Phase Reactor							
			Input Side				Output Side			
	Inout Side	Oitput Side	Model	Code No.	Qty.	Diagram	Model	Code No.		Diagram
0.4	2	2	F6045GB	FIL001098	1	a	F6045GB	FlL001098	1	a
0.75										
1.5										
2.2 3.7										
5.5										
7.5 11	5.5	5.5								
11										
15	14	8	F6045GB	FlL001098	4	b	F11080GB	FlL001097	1	a
18.5		14					F6045GB	FLL001098	4	b
22										
30										
37	22	22								
45	30	30								
55	38	38								
75	60	60	F11080GB	FlL001097			F11080GB	FlL001097		
90	80	80								
110	125	125								
132	150	150								
160	200	200								
185	250	250	F200160PB	300-001-041	4	b	F200160PB	300-001-041	4	b
220	100 2 2	125 $\times 2 \mathrm{P}$								
250	$125 \times 2 \mathrm{P}$	$150 \times 2 \mathrm{P}$								
315	80×4P	80×4P								
355										
450	125×4P	$125 \times 4 \mathrm{P}$								
500	$150 \times 4 \mathrm{P}$	$150 \times 4 \mathrm{P}$								
560	100 $\times 8 \mathrm{P}$	100×8P			8	c			8	c
630	$125 \times 8 \mathrm{P}$	$125 \times 8 \mathrm{P}$				c				c

Fuse and Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs.
Refer to the instruction manual for information on UL-approved components.

Connection Diagram

This example shows a DC power supply (two A1000 drives connected in series).
For an AC power supply, see the connection diagram on page 28.
DC power supply
(converter)

Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced.

200 V Class

$\left\|\begin{array}{c} \text { Model } \\ \text { CIMR-A } \\ \hdashline 2 A \end{array}\right\|$	AC Power Supply Input					DC Power Supply Input					
	Fuse			Fuse Holder		Fuse			Fuse Holder		
	Model	Rated Short- circuit Breaking Current (kA)	Qty.	Model	Qty.	Model	Rated Short- circuit Breaking Current (kA)	Qty.	Model	Qty.	
0004		100	3	CM-1A	1	CR2LS-30		2	CM-1A	1	
0006	CR2LS-30										
0008											
0010	CR2LS-50					CR2S-50					
0012						-					
0018	CR2LS-75					CR2LS-75					
0021	CR2LS-100					CR2LS-100					
0030	CR2L-125					CR2L-125					
0040	CR2L-150		3	CM-2A	1	CR2L-150	100	2	CM-2A	1	
0056	CR2L-175					CR2L-175	100				
0069	CR2L-225		3	*		CR2L-225		2	*		
0081	CR2L-260					CR2L-260					
0110	CR2L-300					CR2L-300					
0138	CR2L-350					CR2L-350					
0169	CR2L-400					CR2L-400					
0211	CR2L-450					CR2L-450					
0250	CR2L-600					CR2L-600					
0312						CR2L-600					
0360						CS5F-800	200				
0415	CS5F-800	200				CS5F-1200					

*: Manufacturer does not recommend a specific fuse holder for this fuse. Contact the manufacturer for information on fuse dimensions.

Capacitor-Type Noise Filter

400 V Class

Note: Always install input fuses for models CIMR-A $\square 4$ A0930 and CIMR-A $\square 4$ A1200.

Capacitor-type noise filter exclusively designed for drive input.
The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes.
Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals.

[Okaya Electric Industries Co., Ltd.]

Model	Code No.
3XYG 1003	C002889

Connection Diagram Dimensions (mm)

Specifications

Rated Voltage	Capacitance (3 devices each)	Operating Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$
440 V	$\mathrm{X}(\Delta$ connection) $): 0.1 \mu \mathrm{~F} \pm 20 \%$ $\mathrm{Y}(\lambda$ connection $): 0.003 \mu \mathrm{~F} \pm 20 \%$	-40 to +85

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

Peripheral Devices and Options (continued)

- Input Noise Filter

Base device selection on motor capacity.

Noise Filter without Case

Noise Filter with Case

Noise Filter ISchaffner EMC K.K.I Note: Refer to the instruction manual for information on the CE mark and compliance with the EMC directive.

Connection Diagram

Connecting Noise Filters in Parallel to the Input or Output Side (examples shows two filters in parallel)

Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals
Noise filters and grounding wire should be as heavy and as short as possible.

200 V Class

	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffner EMC K.K.			
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
0.75												
1.5												
2.2	LNFD-2153DY	FIL000133	1	15	LNFD-2153HY	FIL000141	1	15	-	-	-	-
3.7	LNFD-2303DY	FIL000135	1	30	LNFD-2303HY	FIL000143	1	30	-	-	-	-
5.5	LNFD-2203DY	FIL000134	2	40	LNFD-2203HY	FIL000142	2	40	FN258L-42-07	FIL001065	1	42
7.5	LNFD-2303DY	FIL000135	2	90	LNFD-2303HY	FIL000143	2	60	FN258L-55-07	FIL001066	1	55
11			3				3	90	FN258L-75-34	FIL001067	1	75
15									FN258L-100-35	FIL001068	1	100
18.5			4	120			4	120				
22 30			-	-	-		-	-	FN258L-130-35	FIL001069	1	130
37	-	-				-						
45									FN258L-180-07	FIL001070	1	180
55									FN359P-250-99	FIL001071	1	250
75									FN359P-400-99	FIL001073	1	400
90									FN359P-500-99	FIL001074	1	500
110									FN359P-600-99	FIL001075	1	600

400 V Class

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{4}{|c|}{Noise Filter without Case} \& \multicolumn{4}{|c|}{Noise Filter with Case} \& \multicolumn{4}{|l|}{Noise Filter by Schaffner EMC K.K.} \\
\hline Capacity (kW) \& Model \& Code No. \& Qty. \& \begin{tabular}{l}
Rated Current \\
(A)
\end{tabular} \& Model \& Code No. \& Qty. \& \begin{tabular}{l}
Rated Current \\
(A)
\end{tabular} \& Model \& Code No. \& Qty. \& Rated Current (A) \\
\hline 0.4 \& LNFD-4053DY \& FIL000144 \& 1 \& 5 \& LNFD-4053HY \& FIL000149 \& 1 \& 5 \& \multirow{6}{*}{-} \& \multirow{6}{*}{-} \& \multirow{6}{*}{-} \& \multirow[t]{6}{*}{(A)

-}

\hline | 0.75 |
| :---: |
| 1.5 | \& \multirow[b]{2}{*}{LNFD-4103DY} \& \multirow[b]{2}{*}{FIL000145} \& \multirow[b]{2}{*}{1} \& \multirow[b]{2}{*}{10} \& \multirow[b]{2}{*}{LNFD-4103HY} \& \multirow[b]{2}{*}{FIL000150} \& \multirow[b]{2}{*}{1} \& \multirow[b]{2}{*}{10} \& \& \& \&

\hline 2.2 \& \& \& \& \& \& \& \& \& \& \& \&

\hline 3.7 \& LNFD-4153DY \& FIL000146 \& 1 \& 15 \& LNFD-4153HY \& FIL000151 \& 1 \& 15 \& \& \& \&

\hline 5.5 \& LNFD-4203DY \& FIL000147 \& 1 \& 20 \& LNFD-4203HY \& FIL000152 \& 1 \& 20 \& \& \& \&

\hline 7.5 \& LNFD-4303DY \& FIL000148 \& 1 \& 30 \& LNFD-4303HY \& FIL000153 \& 1 \& 30 \& \& \& \&

\hline 11 \& LNFD-4203DY \& FIL000147 \& 2 \& 40 \& LNFD-4203HY \& FIL000152 \& 2 \& 40 \& FN258L-42-07 \& FIL001065 \& 1 \& 42

\hline 15 \& \multirow{5}{*}{LNFD-4303DY} \& \multirow{5}{*}{FIL000148} \& \multirow[t]{2}{*}{2} \& \multirow[t]{2}{*}{60} \& \multirow{5}{*}{LNFD-4303HY} \& \multirow{5}{*}{FIL000153} \& \multirow[t]{2}{*}{2} \& \multirow[t]{2}{*}{60} \& \multirow[t]{2}{*}{FN258L-55-07} \& \multirow[t]{2}{*}{FIL001066} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{55}

\hline 18.5 \& \& \& \& \& \& \& \& \& \& \& \&

\hline 22
30 \& \& \& 3 \& 90 \& \& \& 3 \& 90 \& FN258L-75-34 \& FIL001067 \& 1 \& 75

\hline 37 \& \& \& \& \& \& \& \& \& FN258L-100-35 \& FIL001068 \& 1 \& 100

\hline 45 \& \& \& 4 \& 120 \& \& \& 4 \& 120 \& FN258L-100-35 \& FIL001068 \& 1 \& 100

\hline 55 \& \multirow{7}{*}{-} \& \multirow{7}{*}{-} \& \multirow[t]{7}{*}{-} \& \multirow{7}{*}{-} \& \multirow{7}{*}{-} \& \multirow{7}{*}{-} \& \multirow{7}{*}{-} \& \multirow{7}{*}{-} \& FN258L-130-35 \& FIL001069 \& 1 \& 130

\hline 75 \& \& \& \& \& \& \& \& \& FN258L-180-07 \& FIL001070 \& 1 \& 180

\hline 90 \& \& \& \& \& \& \& \& \& FN258L-180-07 \& FIL001070 \& 1 \& 180

\hline 110 \& \& \& \& \& \& \& \& \& FN359P-300-99 \& FIL001072 \& 1 \& 300

\hline 132 \& \& \& \& \& \& \& \& \& FN359P-400-99 \& FIL001073 \& 1 \& 400

\hline 160 \& \& \& \& \& \& \& \& \& \& \& \&

\hline 185 \& \& \& \& \& \& \& \& \& FN359P-500-99 \& FIL001074 \& 1 \& 500

\hline 220 \& \multirow{3}{*}{-} \& FN359P-600-99 \& FIL001075 \& 1 \& 600

\hline 250 \& \& \& \& \& \& \& \& \& \& FiL001075 \& \&

\hline 315
355 \& \& \& \& \& \& \& \& \& FN359P-900-99 \& FIL001076 \& 1 \& 900

\hline 450 \& \multirow{3}{*}{-} \& \& \& \& 1200

\hline 500 \& \& \& \& \& \& \& \& \& FN359P-600-99 \& FIL001075 \& 2 \& 1200

\hline 560 \& \& \& \& \& \& \& \& \& FN359P-900-99 \& FIL001076 \& 2 \& 1800

\hline
\end{tabular}

\xrightarrow{W}	$\xrightarrow{A^{\prime}}$	Model LNFD-	Code No.	Figure	Dimensions (mm)							Terminal (mm)		Mounting Screw	Weight (kg)
U	$\bigcirc \bigcirc{ }^{\circ}+$				W	D	H	A	A^{\prime}	B	M	X	Y		
		2103DY	FIL000132	1					-						
III E	© TIL E ©	2153DY	FIL000133	1	120	80	55	108	-	68	20	9	11	M $4 \times 4,20 \mathrm{~mm}$	0.2
	$\bigcirc \bigcirc \bigcirc$	2203DY	FIL000134	1		90		158	-	78		9	11	$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.4
中 晾	$\bigcirc{ }^{1}$	2303DY	FIL000135	2	170	110	70	-	79	98	20	10	13	M4×6,20 mm	0.5
		4053DY	FIL000144	2			75								0.3
		4103DY	FIL000145	2	170	130	95	-	79	118	30	9	11	$\mathrm{M} 4 \times 6,30 \mathrm{~mm}$	0.4
Figure 1	Figure 2	4153DY	FIL000146	2											0.4
		4203DY	FIL000147	2	200	145	100	-	94	133	30	9	11	M $4 \times 430 \mathrm{~m}$	0.5
	$\times 8$	4303DY	FIL000148	2							30	10	13	M $4 \times 4,30 \mathrm{~mm}$	0.6

With Case

Dimensions (mm)

Model LNFD-	Code No.	Dimensions (mm)						Terminal (mm)		Weight (kg)
		W	D	H	A	B	C	X	Y	
2103HY	FIL000140	185	95	85	155	65	33	9	11	0.9
2153HY	FIL000141									
2203HY	FIL000142	240	125	100	210	95	33	9	11	1.5
2303HY	FIL000143							10	13	1.6
4053HY	FIL000149	235	140	120	205	110	43	9	11	1.6
4103HY	FIL000150									1.7
4153HY	FIL000151									
4203HY	FIL000152	270	155	125	240	125	43	9	11	2.2
4303HY	FIL000153							10	13	

Manufactured by Schaffner EMC K.K. Dimensions (mm)

Figure 1

Figure 3

Figure 2

Figure 4

Model	Weight (kg)
FN359P-250-99	16
FN359P-300-99	16
FN359P-400-99	18.5
FN359P-500-99	19.5
FN359P-600-99	20.5
FN359P-900-99	33

Output Noise Filter

Base device selection on motor capacity.

Connection Diagram

【NEC Tokin Corporation】

Use the mounting screw
as the grounding terminal

Dimensions (mm)

200 V Class

$\begin{aligned} & \text { Motor } \\ & \text { Capacity } \end{aligned}$	Model	Code No.	Qty.*1	Rated Current (A)	$\begin{gathered} \text { Dimensions } \\ (\mathrm{mm}) \end{gathered}$								Terminal	Weight*2 (kg)
(kW)					A	B	C	D	E	F	G	H		
0.4	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5 M4	0.5
0.75														
1.5														
2.2	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5 M4	0.6
3.7														
5.5	LF-350KA	FIL000070	1	50	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	TE-K22 M6	2.0
7.5														
11			2	100										
15														
18.5														
	LF-350KA*3	FIL000070	3	150	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	TE-K22 M6	2.0
22	LF-3110KB*3	FIL000076	1	110	540	340	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K60 M8	19.5
	LF-350KA*3	FIL000070	3	150	260	180	180	160	120	65	$7 \times \phi 4.5$	¢ 4.5	TE-K22 M6	2.0
30	LF-375KB*3	FIL000075	2	150	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K22 M6	12.0
37	LF-3110KB	FIL000076	2	220	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K60 M8	19.5
45														
55														
75	LF-3110KB	FIL000076	3	330	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K60 M8	19.5
90			4	440										
110			5	550										

*1: Connect in parallel when using more than one filter
*2: Weight of one filter.
*3: Either noise filter model can be used.
400 V Class

Motor Capacity	Model	Code No.	Qty.*1	Rated Current (A)	Dimensions (mm)								Terminal	Weight*2 (kg)
(kW)					A	B	C	D	E	F	G	H		
0.4	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	\$4.5	TE-K5.5 M4	0.5
0.75														
1.5														
2.2														
3.7														
5.5	LF-320KB	FIL000072	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5 M4	0.6
7.5														
11	LF-335KB	FIL000073		35										0.8
15														
18.5	LF-345KB	FIL000074	1	45	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	TE-K22 M6	2.0
22	LF-375KB	FIL000075	1	75	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K22 M6	12.0
30	LF-375KB													
37	LF-3110KB	FIL000076	1	110	540	340	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K60 M8	19.5
45														
55	LF-375KB	FIL000075	2	150	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K22 M6	12.0
75	LF-3110KB	FIL000076	2	220	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	TE-K60 M8	19.5
90														
110			3	330										
132														
160			4	440										
185			4											
220			5	550										
250			6	660										
315			7	770										
355			8	880										
450			9	990										
500			10	1100										
560			11	1210										
630			12	1320										

24 V Power Supply

The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only. Note: Even if a back-up power supply is used for the control circuit, the main circuit must still have power in order to change parameter settings.

> The installed option adds 50 mm to the total width of the drive. Installed internally for models 185 kW (CIMR-A $\square 4 \mathrm{AO} 044$) and above.

Connection Diagram

Momentary Power Loss Recovery Unit

Dimensions (mm)

Model	Code No.
200 V Class: P0010	P0010
400 V Class: P0020	P0020

Note: Functions as a back-up power supply for drives up to 11 kW . Allows the drive to ride through a power loss up to 2 s long. The drive alone can continue running through a power loss lasting 0.1 s to 1.0 s . Results may vary with drive capacity.

Isolator (Insulation Type DC Transmission Converter)

Dimensions (mm)

Model GP Series

Positioning of the potentiometer is changed depend on the model

Performance

(1) Allowance $\pm 0.25 \%$ of output span (ambient temp.: $23^{\circ} \mathrm{C}$)
(2) Temperature Fluctuation $\pm 0.25 \%$ of output span (at $\pm 10^{\circ} \mathrm{C}$ of ambient temperature)
(3) Aux. Power Supply Fluctuation $\pm 0.1 \%$ of output span (at $\pm 10 \%$ of aux. power supply)
(4) Load Resistance Fluctuation $\pm 0.05 \%$ of output span (in the range of load resistance)
(5) Output Ripple
(6) Response Time
(7) Withstand Voltage
(8) Insulation Resistance
$\pm 0.5 \%$ P-P of output span
0.5 s or less (time to settle to $\pm 1 \%$ of final steady value) 2000 Vac for 60 s (between all terminals and enclosure) $20 \mathrm{M} \Omega$ and above (using 500 Vdc megger between each terminal and enclosure)

Product Line

Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0 to 10 V	0 to 10 V	100 Vac	CON 000019.25
DGP2-4-8	0 to 10 V	4 to 20 mA	100 Vac	CON 0000019.26
DGP2-8-4	4 to 20 mA	0 to 10 V	100 Vac	CON 0000019.35
DGP2-3-4	0 to 5 V	0 to 10 V	100 Vac	CON 000019.15
DGP3-4-4	0 to 10 V	0 to 10 V	200 Vac	CON 000020.25
DGP3-4-8	0 to 10 V	4 to 20 mA	200 Vac	CON 000020.26
DGP3-8-4	4 to 20 mA	0 to 10 V	200 Vac	CON 000020.35
DGP3-3-4	0 to 5 V	0 to 10 V	200 Vac	CON 000020.15

Peripheral Devices and Options (continued)

Braking Unit, Braking Resistor, Braking Resistor Unit

Braking units come standard with 200 V and 400 V class drives 0.4 to 30 kW . If the application requires a braking resistor or braking unit, choose from built-in and stand-alone types in accordance with motor capacity.

Braking Unit (CDBR- D) [CDBR series]

Braking Resistor [ERF150WJ series]

Braking Resistor with Fuse [CF120-B579 series】

Braking Resistor Unit [LKEB series】

200 V Class

Note: 1. Braking resistor (ERF150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 53.
2. Use the retrofit attachment when replacing an older model CDBR braking unit (CDBR- \square B, CDBR- $\square \mathrm{C}$). Refer to TOBP C720600 01 1000-Series Option CDBR, LKEB Installation Manual for more details.
3. Use the External Heatsink Attachment for installation with the heatsink outside the enclosure. Refer to page 53 for details.
4. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.
5. See the connection diagram on page 50 .

400 V Class

Max. Applicable Motor (kW)	ND/HD	A1000	Braking Unit		Braking Resistor (Duty Factor: 3\% ED, 10 s max.)*1										Braking Resistor Unit (Duty Factor: 10% ED, 10 s max.)*1					Min. *2 Connectable Resistance (Ω)								
					No Fuse					With Fuse																		
		Model CIMR-A: : 4 A	Model CDBR-	Qty.		Resistance (Ω)	Qty.	Diagram	Braking Torque* (\%)		Resistance (Ω)	Qty.	Diagram	Braking Torque*3 (\%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque*3 (\%)									
0.4	HD	0002	Built-in		751	750	1	A	230	F	750	1	A	230	40P7	70 W 750Ω	1	B	230	96								
0.75	ND	0002			751	750	1	A	130	F	750	1	A	130	40P7	70 W 750Ω	1	B	130	96								
	HD	0004			751	750	1	A	130	F	750	1	A	130	40P7	$70 \mathrm{~W} 750 \Omega$	1	B	130	96								
1.5	ND	0004			401	400	1	A	125	G	400	1	A	125	41P5	260 W 400Ω	1	B	125	96								
	HD	0005			64																							
2.2	ND	0005			301	300	1	A	115	H	300	1	A	115	42P2	260 W 250Ω	1	B	135	64								
	HD	0007																										
3	ND	0007			201	200	1	A	125	J	250	1	A	100	42P2	$260 \mathrm{~W} 250 \Omega$	1	B	100	64								
	HD	0009			43P7										390 W 150Ω	150			32									
3.7	ND	0009			201	200	1	A	105	J	250	1	A	83	43P7	390W 150Ω	1	B	135	32								
	HD	0011																										
5.5	ND	0011			201	200	2	A*4	135	J	250	2	A*4	105	45P5	520 W 100Ω	1	B	135	32								
	HD	0018			-					-																		
7.5	ND	0018			-					-					47P5	780 W 75Ω	1	B	130	32								
	HD	0023																										
11	ND	0023			-					-					4011	1040 W 50Ω	1	B	135	32								
	HD	0031			20																							
15	ND	0031			-										4015	1560 W 40Ω	1	B	125	20								
	HD	0038																										
18.5	ND	0038			-										4018	4800 W 32Ω	1	B	125	20								
	HD	0044					19.2																					
22	ND	0044			-										4022	4800 W 27.2Ω	1	B	125	19.2								
	HD	0058																										
30	ND	0058			-							-			4030	6000 W 20Ω	1	B	125	19.2								
	HD	0072																										
37	ND	0072			-							-			4030	$6000 \mathrm{~W} 20 \Omega$	1	B	100	19.2								
	HD	0088	4045D	1											4037	9600 W 16Ω		C	125	12.8								
45	ND	0088	4045D	1	-										4045	9600 W 13.6Ω	1	C	125	12.8								
	HD	0103																										
55	ND	0103	4045D	1	-										4045	9600 W 13.6Ω	1	C	100	12.8								
	HD	0139	4030D	2											4030	$6000 \mathrm{~W} 20 \Omega$	2	D	135	19.2								
75	ND	0139	4030D	2	-							-			4030	$6000 \mathrm{~W} 20 \Omega$	2	D	100	19.2								
	HD	0165	4045D												4045	9600W 13.6Ω			145	12.8								
90	ND	0165	4045D	2		-									4045	9600W 13.6 Q	2	D	100	12.8								
	HD	0208														Ω												
110	ND	0208	4220 D	1		-									4030		3	E	100	3.2								
110	HD	0250	42200	1											4030	6000 W 20Ω	3	E	100	3.2								
132	ND	0250	4220D	1		-									4045	9600W 13.6Ω	4	E	140	3.2								
	HD	0296																										
160	ND	0296	4220D	1		-									4045	9600W 13.6Ω	4	E	140	3.2								
	HD	0362														9600W 13.6Ω	4											
185	ND	0362	4220D	1		-									4045	9600W 13.6 Ω	4	E	120	3.2								
	HD	0414													4045	9600W 13.6Ω	4	E	120	3.2								
220	ND	0414	4220D	1		-									4037	9600 W 16Ω	5	E	110	3.2								
	HD	0515	42200												4037				110									
250	ND	0515	4220D	1		-					-	-			4037	9600 W 16Ω	5	E	90	3.2								
315	HD	0675	4220D	2		-					-	-			4045	9600 W 13.6Ω	6	F	100	3.2								
355	ND	0675	4220D	2		-					-	-			4045	9600 W 13.6Ω	8	F	120	3.2								
450	HD	0930	4220D	2		-					-	-			4037	$9600 \mathrm{~W} 16 \Omega$	10	F	100	3.2								
500	ND	0930	4220D	2		-					-	-			4037	$9600 \mathrm{~W} 16 \Omega$	10	F	90	3.2								
560	HD	1200	4220D	3		-					-	-			4037	$9600 \mathrm{~W} 16 \Omega$	15	F	120	3.2								
630	ND	1200	4220D	3		-					-	-			4037	9600 W 16Ω	15	F	100	3.2								

*1: Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.
$* 2$: Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.
*3 : Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. If the braking torque exceeds the value shown in the table, the capacity of the braking resistor must be increased.
*4 : When using multiple braking resistors or braking resistor units, connect them in parallel.
Note: 1. Braking resistor (ERF150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 53.
2. Use the retrofit attachment when replacing an older model CDBR braking unit (CDBR- $\square \mathrm{B}, \mathrm{CDBR}-\square \mathrm{C}$). Refer to TOBP C720600 01 1000-Series Option CDBR, LKEB Installation Manual for more details.
3. Use the External Heatsink Attachment for installation with the heatsink outside the enclosure. Refer to page 53 for details.
4. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.
5. See the connection diagram on page 50.

Peripheral Devices and Options (continued)

Connection Diagram

Connection Diagram A

Connection Diagram C

Connection Diagram B
(Braking Units in Parallel**)
Connection Diagram D

*1: Set L8-01 to 1 to enable braking resistor overload protection in the drive when using braking resistors, and set a multi-function input to "Braking Resistor Fault" (H1-i= $1=\mathrm{D}$). Wiring sequence should shut off power to the drive when a fault output is triggered. CF120-B579 series does not need to be wired an external sequence.
*2: Set L3-04 to 0 [Stall Prevention during Decel $=$ Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified deceleration time. *3: 200 V class drives do not require a control circuit transformer.
*4: Set L8-55 to 0 to disable the protection function for the built-in braking
transistor when using a regenerative unit or another type of braking option in lieu of the built-in braking transistor. If the protection function is enabled under these conditions, it may cause a braking resistor fault (rF).
When connecting a separately-installed type braking resistor unit (model

CDBR) to drives with a built-in braking transistor ($200 \mathrm{~V} / 400 \mathrm{~V} 30 \mathrm{~kW}$ or less), connect the B1 terminal of the drive to the positive terminal of the braking resistor unit and connect the negative terminal of the drive to the negative terminal of the braking resistor unit. The B2 terminal is not used in this case.
*5: Be sure to protect non-Yaskawa braking resistors by thermal overload relay.
*6: When using more than one braking unit connected in parallel, set one of the braking units as the master, and set the others as slaves.

* 7: Connect fault relay output to multi-function digital input S:- . (External Fault). Connect the CDBR transistor short-circuit detection output to disconnect main input power to the drive.
*8: Connect directly to the drive terminal or install a terminal block.
*9: Contact your Yaskawa or nearest agent when using the braking unit (CDBRD) with earlier models (CDBR-': B or CDBR-'C).
*10: Connect fault relay output to multi-function digital input Si. (External Fault).

Model, Code No.
Braking Unit
200 V Class

Model CDBR- $\square \square \square \square$	Protection Design	Code No.
2022D	IP20	$100-091-707$
	UL Type 1	$100-091-754$
$2037 D$	IP20	$100-091-712$
	UL Type 1	$100-091-759$
2110 D	IP00	$100-091-524$
	UL Type 1	$100-091-530$

400 V Class

Model CDBR- $-\square \square \square \square$	Protection Design	Code No.
4030 D	IP20	$100-091-717$
	UL Type 1	$100-091-764$
4045 D	IP20	$100-091-722$
	UL Type 1	$100-091-769$
4220 D	IP00	$100-091-526$
	UL Type 1	$100-091-532$

Dimensions (mm)

Braking Unit

Open-Chassis [IP20]
CDBR-2022D, -2037D, -4030D, -4045D

Open-Chassis IIPOOD
CDBR-2110D, -4220D

CDBR-2110D, -4220D

Weight: 8.3 kg

Note: Remove the top protective cover to convert the drive to a UL Type 1 enclosure when installing the drive in a control panel.

Watts Loss

Model CDBR- $\cdots \cdots \cdots$	Watts Loss (W)
2022 D	27
2037 D	38
2110 D	152
4030 D	24
4045 D	36
4220 D	152

Peripheral Devices and Options (continued)

Braking Resistor

A separate attachment is need. Contact Yaskawa for details. The following attachment can be used to install to the drive.

Braking Resistor Unit (stand-alone)

Figure 1

	Braking Resistor Unit Model LKEB-	Figure	Dimensions (mm)					$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	Allowable Average Power Consumption (W)
			A	B	C	D	MTG Screw		
$\begin{aligned} & 200 \text { V } \\ & \text { Class } \end{aligned}$	20P7	1	105	275	50	260	M 5×3	3.0	30
	21P5	1	130	350	75	335	M5×4	4.5	60
	22P2							4.5	89
	23P7							5.0	150
	25P5	1	250	350	200	335	M6×4	7.5	220
	27P5							8.5	300
	2011	2	266	543	246	340	M8×4	10	440
	2015		356		336			15	600
	2018		446		426			19	740
	2022							19	880

Figure 2

Applicable	Braking Resistor			Dime	nsion	ns (m			Alowabl Average
Voltage Class	Unit Model LKEB-	Figure	A	B	C	D	MTG Screw	(kg)	Power Consumption (W)
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	40P7	1	105	275	50	260	M5 $\times 3$	3.0	30
	41P5	1	130	350	75	335	M5×4	4.5	60
	42P2							4.5	89
	43P7							5.0	150
	45P5	1	250	350	200	335	M6×4	7.5	220
	47P5							8.5	300
	4011	2	350	412	330	325	M6×4	16	440
	4015							18	600
	4018	2	446	543	426	340	M8×4	19	740
	4022							19	880
	4030	2	356	956	336	740	M8×4	25	1200
	4037		446		426			33	1500
	4045							33	1800

Attachment for Braking Resistor

Attachment increases the depth of the drive.

Model	Code No.
EZZO20805A	$100-048-123$

Braking Unit External Heatsink Attachment

Use the external heatsink attachment for installation with the heatsink outside the enclosure.

Attachment	\qquad CDBR-	Model (Code No.)
$\text { ex } 0_{0}^{\circ}$	2022D	$\begin{gathered} \text { EZZ021711A } \\ (100-066-355) \end{gathered}$
	2037D	
	4030D	
	4045D	

Dimensions (mm)

Braking Unit Panel Cutout Dimensions

Modification Figure1

Modification Figure2

Model CDBR-	Modification Figure	Dimensions (mm)								
		W*	H*	W1	W2	W3	H1	H2	H3	d1
2022D	1	172	226	108	118	84	166	172	152	M4
2037D	1	172	226	108	118	84	166	172	152	M4
2110D	2	175	294	110	159	-	279	257.8	-	M5
4030D	1	172	226	108	118	84	166	172	152	M4
4045D	1	172	226	108	118	84	166	172	152	M4
4220D	2	175	294	110	159	-	279	257.8	-	M5

*: The following W, H information is the size when in installing the gasket.

Peripheral Devices and Options (continued)

- VS System Module (Power Supply Capacity 6 VA or less)

Name (Model)	Exterior	Function
Soft Starter A (JGSM-01) Soft Starter B (JGSM-02)		Provides smooth changes in speed during start, stop, and when sudden changes in the speed reference would otherwise impact the load. Independent accel/decel settings, an output signal during speed changes, and fast stopping features are included. Capable of detecting zero speed and motor direction. Acceleration and deceleration time setting ranges: Soft Starter A: 1.5 to 30 s Soft Starter B: 5 to 90 s
Ratio Setter A (JGSM-03)		Converts the current signal 4 to 20 mA to a voltage signal 0 to 10 V . Sets five types of ratios and biases.
Ratio Setter B (JGSM-04)		Converts the frequency signal 0 to 2 kHz to a voltage signal 0 to 10 V . Sets five types of ratios and biases.
Ratio Setter C (JGSM-17)		Converts a 200 Vac signal, a 30 Vac tachogenerator signal, or a 10 Vdc signal to DC for use as the speed reference. Allows the user to set up to five ratios and biases.
Follower Ratio Setter (JGSM-05)		Converts a frequency signal from a tachogenerator for voltage input. Allows the user to set up to five ratios and biases.
Position Controller (JGSM-06)		Converts a self-synchronizing signal from YVGC-500W*1, then converts that signal to DC voltage proportional to the rotational angle. Equipped with a signal mixing function to minimize deviation from the reference signal.
PID Controller (JGSM-07)		Independently sets ratio gain, integral, and differential time for the simple process control. Integral reset, stepless operation, and wind-up functions are available.
Preamplifier (JGSM-09- $\square \square$)*2		Amplifies both the power of DC input signal and output of snap-in function modules JZSP-11 to 16*1.
UP/DOWN Setter (JGSM-10B)		Executes "UP" or "DOWN" command remotely or from several locations by lowering or raising the reference voltage.
Operational Amplifier (JGSM-12- \qquad)*3		Required operational circuits are provided through a range of operational impedances.
Signal Selector A (JGSM-13)		Consists of power supply circuit and two relay circuits. Used as a selector circuit of control signals.
Signal Selector B (JGSM-14)		Contains three relay circuits to switch between control signals. Must be using in combination with JGSM-13, which supplies power.

Name (Model)	Appearance	Function
Comparator (JGSM-15- $\square \square$)*2		Detects signal levels for DC voltage, current, AC tachogenerator, or frequency reference and compares them with two preset levels. The snap-in module*1 is used to drive relays and output contact signals.
V/I Converter (JGSM-16- $\square \square$)*2		Converts DC voltage into a 4 to 20 mA current signal for use with other monitoring devices. A snap-in module*1 can also be added to monitor frequency or provide feedback for a tachogenerator.
D/A Converter (JGSM-18) (JGSM-19)		Converts BCD 3-digit or 12-bit binary digital signals to analog signals of -10 to +10 V with high accuracy. Model JGSM-18: For BCD 3-digit input signals Model JGSM-19: For 12-bit binary signals
Static Potentiometer (JGSM-21 D/A Converter) (JGSM-22 Controller)		Static potentiometer can be used in combination with remote setting device JGSM10B for the following applications: - Maintain reference values despite power loss - Set deceleration times externally - Operate as a soft-starter for an analog signal JGSM-21 and JGSM-22 must be used in combination with one another.

*1: Offered as a standard Yaskawa product.
*2: $\square \square$ shows model number of VS snap-in function modules. Refer to the VS Snap-in Module list for more information.
*3: $\square \square$ indicates impedance class.
Note: Both $200 \mathrm{~V} / 220 \mathrm{~V}$ at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ are available as standard models. Use a transformer for other power supplies with a capacity of 6 VA or less.

VS System Module Dimensions (mm)
2-4.8 dia. mtg. hole

VS Snap-in Module List

Application	Name	Model
Short-circuit of mounting connector of VS snap-in module	Short-circuit PC board	JZSP-00
Buffer accel/decel operation	Soft starter	JZSP-12
Conversion of the current signal 4 to 20 mA , such as for process adjusting meters, to a voltage signal of 0 to 10 V.	I/V converter	JZSP-13
Conversion of the frequency signal 0 to 2 kHz to a voltage signal 0 to 10 V.	f/V converter	JZSP-14
Sequence operation with main unit	Tachogenerator follower	JZSP-15
Amplify or reduce signal	SZSP-16 \square	

Peripheral Devices and Options (continued)

LCD Operator

An LCD operator with a 6-digit display makes it easy to check the necessary information. Includes a copy function for saving drive settings.

Dimensions (mm)

Model	Code No.
JVOP-180	$100-142-915$

Mtg. hole, M3 $\times 2$ screw (depth 5)

Operator Extension Cable
Enables remote operation

Model	Code No.	Remarks
WV001 (1 m)	WV001	• RJ-45, 8-pin straight-through \cdot UTP CAT5e cable (1 m/3 m)
Wote: Use straight-through cable.		
Other cables will cause drive		
failure.		

Note: 1. Never use this cable for connecting the drive to a PC. Doing so may damage the PC.
2. You can also use a commercially available LAN cable (straight-through) for the operator extension cable.

Operator Mounting Bracket

This bracket is required to mount the LED or LCD operator outside an enclosure panel.

Item	Model	Code No.	Installation	Notes
Installation Support Set A	EZZ020642A	100-039-992		For use with holes through the panel
Support Set B	EZZ020642B	100-039-993		For use with panel mounted threaded studs Note: If weld studs are on the back of the panel, use the Installation Support Set B.

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Note: 1. You can also use a commercially available USB 2.0 cable (with A-B connectors) for the USB cable.
2. No USB cable is needed to copy parameters to other drives.

Specifications

Item	Specifications	
Port	LAN (RJ-45) Connect to the drive.	
	USB (Ver.2.0 compatible) Connect to the PC as required.	
Power Supply	Supplied from a PC or the drive	
Operating System	OS compatible with 32-bit memory	Windows 2000
		Windows XP
	OS compatible with 32-bit and 64-bit memory	Windows 7
Memory	Memorizes the parameters for one drive.	
Dimensions	$30(\mathrm{~W}) \times 80$ (H) $\times 20$ (D) mm	
Accessories	RJ-45 Cable (1 m), USB Cable (30 cm)	

Note: 1. Drives must have identical software versions to copy parameters settings.
2. Requires a USB driver.

You can download the driver for free from Yaskawa's product and technical information website (http://www.e-mechatronics.com).
3. Parameter copy function disabled when connected to a PC.

PC Cable

Cable to connect the drive to a PC with DriveWizard Plus or DriveWorksEZ installed. Use a commercially available USB 2.0 cable (A-B connectors, max. 3 m).

Connection

Note: 1. DriveWizard Plus is a PC software package for managing parameters and functions in Yaskawa drives. To order this software, contact your Yaskawa. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. To order this software, contact our sales representative.
2. Requires USB driver. You can download the driver for free from Yaskawa's product and technical information website (http://www.e-mechatronics.com)

Peripheral Devices and Options (continued)

Frequency Meter/Current Meter

Model	Code No.
Scale-75 Hz full-scale: DCF-6A	FM000065
Scale-65/130 Hz full-scale: DCF-6A	FM000085
Scale-5 A full-scale: DCF-6A	DCF-6A-5A
Scale-10 A full-scale: DCF-6A	DCF-6A-10A
Scale-20 A full-scale: DCF-6A	DCF-6A-20A
Scale-30 A full-scale: DCF-6A	DCF-6A-30A
Scale-50 A full-scale: DCF-6A	DCF-6A-50A

Note: DCF-6A specifications are $3 \mathrm{~V}, 1 \mathrm{~mA}$, and $3 \mathrm{k} \Omega$
inner impedance. Because the A1000 multi-function analog monitor output default setting is 0 to 10 V ,
set frequency meter adjusting potentiometer (20 k Ω) or parameter $\mathrm{H} 4-02$ (analog monitor output gain) within the range of 0 to 3 V .

Dimensions (mm)

Terminal screw $\times 2(\mathrm{M} 4)$
Mtg. bolt $\times 4$ (M3)

Panel Cut-Out
Weight: 0.3 kg

Variable Resistor Board (installed to drive terminals)

Model	Code No.
Meter scale $20 \mathrm{k} \Omega$	ETX3120

Weight: 20 g

- Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
RV30YN20S $2 \mathrm{k} \Omega$	RH000739
RV30YN20S $20 \mathrm{k} \Omega$	RH000850

Dimensions (mm)

Weight: 0.2 kg

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
CM-3S	HLNZ-0036

Dimensions (mm)

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
NPJT41561-1	NPJT41561-1

Dimensions (mm)

Output Voltage Meter

Model	Code No.
Scale-300 V full-scale (Rectification Type Class 2.5: SCF-12NH)	VM000481
Scale-600 V full-scale (Rectification Type Class 2.5: SCF-12NH)	VM000502

Dimensions (mm)

Potential Transformer

Model	Code No.
600 V meter for voltage transformer UPN-B 440/110 V (400/100 V)	$100-011-486$

Dimensions (mm)

Application Notes

Application Notes

Selection

- Installing a Reactor

An AC or DC reactor can be used for the following situations:

- when the power supply is 600 kVA or more.
- to smooth peak current that results from switching a phase advance capacitor.
- to improve the power supply power factor.

A DC reactor comes standard with 200 V and 400 V class models with a capacity of 22 kW or more.
Use an AC reactor when also connecting a thyristor converter to the same power supply system, regardless of the conditions of the power supply.

- Drive Capacity

Make sure that the motor's rated current is less than the drive's output current. When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

■ Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

- Emergency Stop

When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

- Options

The B1, B2, $-,+1,+2$ and +3 terminals are used to connect optional devices. Connect only A1000-compatible devices.

- Repetitive Starting/Stopping

Cranes (hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the

IGBTs is about 8 million start and stop cycles with a 2 kHz carrier frequency and a 150\% peak current. Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.
For cranes and other applications using the inching function in which the drives starts and stops the motor repeatedly, Yaskawa recommends the following steps to ensure torque levels:

- Select a large enough drive so that peak current levels remain below 150\%.
- The drive should be one frame size larger than the motor.
- As the carrier frequency of the drive is increased above the factory default setting, the drive's rated output current must be derated. Refer to the instruction manual of the drive for details on this function.

Installation

- Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, oil mist, corrosive gas, and flammable gas, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

- Installation Direction

The drive should be installed upright as specified in the manual.

- External Heatsink

When using an external heatsink, UL compliance requires that exposed capacitors in the main circuit are covered to prevent injury to surrounding personnel. The portion of the external heatsink that projects out can either be protected with the enclosure, or with the appropriate capacitor cover after drive installation is complete. Contact Yaskawa for information on capacitor covers.

Installation of Bypass Circuit
If the fuse blows or the circuit breaker (MCCB) trips, check the cable wiring and selection of peripheral devices and identify the cause. If the cause cannot be identified, do not turn ON the power supply or operate the device. Contact your Yaskawa representative. If a drive fails and the motor will be directly driven using a commercial power supply, install the bypass circuit shown in the diagram below. If this bypass circuit is not installed, remove the drive and then connect the motor to a commercial power supply. (In other words, after disconnecting the cables connected to the main circuit terminals, such as main circuit power supply input terminals R/L1, S/L2, and T/L3 and drive output terminals U/T1, V/T2, and W/T3, connect the motor to a commercial power supply.)

Settings

■ Use V/f Control when running multiple induction motors at the same time.

- If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.

- Upper Limits

Because the drive is capable of running the motor at up to 400 Hz , be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz .

■ DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

■ Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel
times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

General Handling

- Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

- Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

- Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock.
The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

■ Wiring

Make sure to use ring tongue solderless terminals when wiring UL/cUL-certified drives. Use the tools recommended by the terminal manufacturer for caulking.

- Transporting the Drive
- Never steam clean the drive. During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.
- When hoisting a CIMR-A $\square 4$ A0930 or a CIMR-A $\square 4$ A1200 drive while it is upright, be sure to re-fit the eyebolts on its top panel and suspend it at four points at the top. Otherwise the drive can fall and cause injuries. Refer to the instruction manual for details.

Application Notes (continued)

Peripheral Devices

- Installing a Ground Fault Interrupter or an MCCB Be sure to install an MCCB or an ELCB that is recommended by Yaskawa at the power supply side of the drive to protect internal circuitry. With a CIMR-A $\square 4$ A0930 or a CIMR-A $\square 4 A 1200$, be sure to install a fuse in conjunction with the MCCB or ELCB. The type of MCCB is selected depending on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. If you do not use a recommended ELCB, use one fitted for harmonic suppression measures and designed specifically for drives. A malfunction may occur due to high-frequency leakage current, so the rated current of the ELCB must be 30 mA or higher per drive unit. If a malfunction occurs in an ELCB without any countermeasures, reduce the carrier frequency of the drive, replace the ELCB with one that has countermeasures against high frequency, or use an ELCB which has a rated current of 200 mA or higher per drive unit.
Select an MCCB or an ELCB with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ELCB or MCCB in order to handle the short-circuit current level.

■ Magnetic Contactor for Input Power

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.
Even though an MC is designed to switch to a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

- Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is
stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor. Use an MC with delayed release if momentary power loss is a concern.

Motor Thermal Over Load Relay Installation

 Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multi-pole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter $(\mathrm{L} 1-01=0)$, and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate. When long motor cables and high carrier frequency are used, nuisance tripping of the thermal relay may occur due to increased leakage current. Therefore, reduce the carrier frequency or increase the tripping level of the thermal overload relay.Improving the Power Factor Installing a DC or AC reactor to the input side of the drive can help improve the power factor.
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because highfrequency contents contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.

- Radio Frequency Interference

Drive output contains high-frequency contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

- Wire Gauges and Wiring Distance

Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used. The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m , and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive
with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

Counteracting Noise
Because A1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following points in mind when considering how to reduce motor noise:

- Lowering the carrier frequency (C6-02) minimizes the effects of noise.
- A line noise filter can reduce the affects on AM radio frequencies and poor sensor performance. See "Options and Peripheral Devices" on page 34.
- Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise from the drive power lines.

<Provided by JEMA>
Leakage Current
High-frequency leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution
Ground Leakage Current	MCCB is mistakenly triggered	- Lower the carrier frequency set to parameter C6-02.
- Try using a component designed to		
minimize harmonic distortion for		
the MCCB such as the NV series		
by Mitsubishi.		

The following table shows the guidelines for the set value of the carrier frequency relative to the wiring distance between the drive and the motor when using V/f control.

Wiring Distance*	50 m or less	100 m or less	100 m or more
C6-02:	1 to A	$1,2,7$ to A	$1,7 \mathrm{to} \mathrm{A}$
Carrier Frequency Selection	(15 kHz or less)	$(5 \mathrm{kHz}$ or less)	$(2 \mathrm{kHz}$ or less)

*: When a single drive is used to run multiple motors, the length of the motor cable should be calculated as the total distance between the drive and each motor.
When the wiring distance exceeds 100 m , use the drive observing the following conditions.

- Select V/f control mode (A1-02=0)
- To start a coasting motor
a) Use the current detection type (b3-24=0) when using the speed search function, or
b) Set the DC injection braking time at start (b2$03=0.01$ to 10.00 sec) to stop a coasting motor and restart it.
More than one synchronous motor cannot be connected to a single drive. The maximum wiring distance between the drive and the synchronous motor must be 100 m .

Application Notes (continued)

- Notes on Motor Operation

- Motor Bearing Life

In applications involving constant speed over long periods, such as fans, pumps, extruders, and textile machinery, the life of the motor bearing may be shortened. This is called bearing electrolytic corrosion. The installation of a zerophase reactor between the drive and motor, and the utilization of a motor with insulated bearings are effective countermeasures. Details can be found in the technical documentation. Contact your Yaskawa or nearest sales representative for more information.

Using a Standard Motor

- Low Speed Range

There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load torque should be reduced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds.

- Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

- High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation.

- Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

■ Vibration and Shock A1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the
following points in mind when using high carrier PWM:
(1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shockabsorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.
(2) Any imperfection on a rotating body increases vibration with speed.
Caution should be taken when operating above the motor rated speed.
(3) Subsynchronous Resonance Subsynchronous resonance may occur in fans, blowers, turbines, and other applications with high load inertia, as well as in motors with a relatively long shaft. Yaskawa recommends using Closed Loop Vector Control for such applications.

- Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated speed (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
- For applications running a synchronous motor with the drive set for Heavy Duty performance (particularly hoists and conveyor applications), use Closed Loop Vector Control for PM (A1-02 = 7). Contact Yaskawa for details.
- When the power to a drive running a PM motor is shut off, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:
- Applications where the machine can still rotate even though the drive has fully stopped should have a load switch installed to the output side of the drive. Yaskawa recommends manual load switches from the AICUT LB Series by Aichi Electric Works Co., Ltd.
- Do not connect to a load that could potentially rotate the motor faster than the maximum allowable speed even when the drive has been shut off.
- Wait at least one minute after opening the load switch on the output side before inspecting the drive or performing any maintenance.
- Do not open and close the load switch while the motor is running, as this can damage the drive.
- If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.
- Synchronous motors cannot be started directly from line power. Applications requiring line power to start should use an induction motor with the drive.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- The amount of starting torque that can be generated differs by the type of motor being used. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.
- Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed.
- The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.
- When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Conveyor, transport, and hoist applications using a holding brake should run an IPM motor in Closed Loop Vector Control for PM motors.

To restart a coasting motor rotating at over 200 Hz , use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor. Speed Search can be used to restart a coasting motor rotating slower than 200 Hz . If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted.
*: Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor.

Applications with Specialized Motors

- Multi-Pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

- Explosion-Proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.
An explosion-proof pulse generators (PG) is used for an explosion-proof with voltage tolerance. Use a specially designed pulse coupler between the drive and the PG when wiring.

Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

Single-Phase Motor
Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes high-frequency current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. A1000 is for use only with 3-phase motors.

Uras Vibrator
Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:

Application Notes (continued)

(1) Uras vibrator should be used within the drive rated frequency
(2) Use V/f Control
(3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator

Note: A drive with a different capacity must be selected if the acceleration time is less than 5 s .
(4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

Motor with Brake

Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.) Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

*: Units are displayed in kW . When selecting a model, make sure that the rated output current is higher than the motor rating current.

Warranty Information

- Warranty Period

The period is 12 months from the date the product is first used by the buyer, or 18 months from the date of shipment, whichever occurs first.

- Post-Warranty Repair Period

The post-warranty repair period applies to products that are not in the standard warranty period.
During the post-warranty repair period, Yaskawa will repair or replace damaged parts for a fee.
There is a limit to the period during which Yaskawa will repair or replace damaged parts.
Contact Yaskawa or your nearest sales representative for more information.

- Warranty Scope

Failure diagnosis

The primary failure diagnosis shall be performed by your company as a rule.
By your company's request, however, we or our service sector can execute the work for your company for pay. In such a case, if the cause of the failure is in our side, the work is free.

Repair

When a failure occurred, repairs, replacement, and trip to the site for repairing the product shall be free of charge. However, the following cases have to be paid.

- Cases of failure caused by inappropriate storing, handling, careless negligence, or system design errors performed by you or your customers.
- Cases of failure caused by a modification performed by your company without our approval.
- Cases of failure caused by using the product beyond the specification range.
- Cases of failure caused by force majeure such as natural disaster and fire.
- Cases in which the warranty period has expired.
- Cases of replacement of consumables and other parts with limited service life.
- Cases of product defects caused by packaging or fumigation processing.
- Cases of malfunction or errors caused by programs created by you using DriveWorksEZ.
- Other failures caused by reasons for which Yaskawa is not liable.

The services described above are available in Japan only. Please understand that failure diagnosis is not available outside of Japan. If overseas after-sales service is desired, consider registering for the optional overseas after-sales service contract.

Exception of Guaranteed Duty

Lost business opportunities and damage to your property, including your customers and other compensation for work, is not covered by the warranty regardless of warranty eligibility, except when caused by product failure of Yaskawa products.

- Definition of Delivery

For standard products that are not set or adjusted for a specified application, Yaskawa considers the product delivered when it arrives at your company and Yaskawa is not responsible for on-site adjustments or test runs.

Region	Service Area	Service Location	Service Agency		Telephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	(1)YASKAWA AMERICA INC.	$\begin{aligned} & \text { Headquarters } \\ & \begin{array}{ll} \mathbf{s} & +1-847-887-7000 \\ \text { FAX } & +1-847-887-7370 \end{array} \end{aligned}$	
	Mexico	Mexico City	(2PILLAR MEXICANA. S.A. DE C.V.	$\begin{aligned} & \mathbf{B} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +52-555-660-5553 \\ & +52-555-651-5573 \end{aligned}$
South America	Brazil	São Paulo	(3)YASKAWA ELÉTRICO DO BRASIL LTDA.	$\begin{aligned} & \mathbf{B} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +55-11-3585-1100 \\ & +55-11-3585-1187 \end{aligned}$
	Colombia	Bogota	(4)VARIADORES LTD.A.	T	+57-1-795-8250
Europe	Europe, South Africa	Frankfurt	(5)ASKAWA EUROPE GmbH	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +49-6196-569-300 \\ & +49-6196-569-398 \end{aligned}$
Asia	Japan	Tokyo, offices nationwide	6YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	$\begin{aligned} & \mathbf{B} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +81-3-5402-4502 \\ & +81-3-5402-4580 \end{aligned}$
			(7)YASKAWA ELECTRIC ENGINEERING CORPORATION (After-sales service)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +81-4-2931-1810 \\ & +81-4-2931-1811 \end{aligned}$
	South Korea	Seoul	BYASKAWA ELECTRIC KOREA CORPORATION (Sales)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +82-2-784-7844 \\ & +82-2-784-8495 \end{aligned}$
			© YASKAWA ENGINEERING KOREA CORPORATION (After-sales service)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +82-2-3775-0337 \\ & +82-2-3775-0338 \end{aligned}$
	China	Beijing, Guangzhou, Shanghai	(10YASKAWA ELECTRIC (CHINA) CO., LTD.	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +86-21-5385-2200 \\ & +86-21-5385-3299 \end{aligned}$
	Taiwan	Taipei	(11)YASKAWA ELECTRIC TAIWAN CORPORATION	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +886-2-8913-1333 \\ & +886-2-8913-1513 \end{aligned}$
	Singapore	Singapore	(12)YASKAWA ASIA PACIFIC PTE. LTD. (Sales)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +65-6282-3003 \\ & +65-6289-3003 \end{aligned}$
			(13)YASKAWA ASIA PACIFIC PTE. LTD. (After-sales service)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +65-6282-1601 \\ & +65-6282-3668 \end{aligned}$
	Thailand	Bangkok	(14)YASKAWA ELECTRIC (THAILAND) CO., LTD.	$\begin{aligned} & \mathbf{B} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +66-2-017-0099 \\ & +66-2-017-0090 \end{aligned}$
	Vietnam	Ho Chi Minh	(15)YASKAWA ELECTRIC VIETNAM CO., LTD.	$\begin{aligned} & \mathbf{B} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +84-8-3822-8680 \\ & +84-8-3822-8780 \end{aligned}$
		Hanoi		$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +84-4-3634-3953 \\ & +84-4-3654-3954 \end{aligned}$
	India	Bangalore	(16)YASKAWA INDIA PRIVATE LIMITED	$\begin{aligned} & \mathbf{3} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +91-80-4244-1900 \\ & +91-80-4244-1901 \end{aligned}$
	Indonesia	Jakarta	(17) PT. YASKAWA ELECTRIC INDONESIA	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & \hline+62-21-2982-6470 \\ & +62-21-2982-6471 \end{aligned}$
Oceania	Australia New Zealand	Contact to service agency in Singapore ((12) (13).			

A1000

DRIVE CENTER (INVERTER PLANT)

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan
Phone +81-930-25-2548 Fax +81-930-25-3431
http://www.yaskawa.co.jp
YASKAWA ELECTRIC CORPORATION
New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan
Phone +81-3-5402-4502 Fax +81-3-5402-4580
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A
Phone +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax +1-847-887-7310 http://www.yaskawa.com

YASKAWA ELETRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasi
Phone +55-11-3585-1100 Fax +55-11-3585-1187
http://www yaskawa com br

YASKAWA EUROPE GmbH

Hauptstraße 185, 65760 Eschborn, Germany
Phone +49-6196-569-300 Fax +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone +82-2-784-7844 Fax +82-2-784-8495
http://www.yaskawa.co.kr
YASKAWA ASIA PACIFIC PTE. LTD.
30A Kallang Place, \#06-01 Singapore 339213
Phone +65-6282-3003 Fax +65-6289-3003
http://www.yaskawa.com.sg
YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand
Phone +66-2-017-0099 Fax +66-2-017-0799
http://www.yaskawa.co.th

PT. YASKAWA ELECTRIC INDONESIA

Secure Building-Gedung B Lantai Dasar \& Lantai 1 JI. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone +62-21-2982-6470 Fax +62-21-2982-647 http://www.yaskawa.co.id/
YASKAWA ELETRIC VIETNAM CO., LTD HO CHI MINH OFFICE
Suite 1904A, 19th Floor Centec Tower, 72-74 Nguyen Thi Minh Khai Street, Ward 6, District 3, Ho Chi Minh City, Vietnam Phone +84-8-3822-8680 Fax +84-8-3822-8780

YASKAWA ELETRIC VIETNAM CO., LTD HA NOI OFFICE

2nd Floor, Somerset Hoa Binh Hanoi, No. 106, Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
Phone +84-4-3634-3953 Fax +84-4-3654-3954
YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone +86-21-5385-2200 Fax +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE

Room 1011, Tower W3 Oriental Plaza, No. 1 East Chang An Ave.
Dong Cheng District, Beijing, 100738, China
Phone +86-10-8518-4086 Fax +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
http://www.yaskawa.com.tw

YASKAWA INDIA PRIVATE LIMITED

\#17/A, Electronics City, Hosur Road, Bangalore, 560100 (Karnataka), India
Phone +91-80-4244-1900 Fax +91-80-4244-1901
http://www.yaskawaindia.in

[^0]: Note: Footnotes are listed on page 23.

[^1]: Note: Footnotes are listed on page 23.

[^2]: * 1: The motor capacity (kW) refers to a Yaskawa 4-pole, $60 \mathrm{~Hz}, 400 \mathrm{~V}$ motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
 *2: Rated output capacity is calculated with a rated output voltage of 440 V .
 *3: This value assumes a carrier frequency of 2 kHz . Increasing the carrier frequency requires a reduction in current.
 *4: This value assumes a carrier frequency of 8 kHz . Increasing the carrier frequency requires a reduction in current.
 *5: This value assumes a carrier frequency of 5 kHz . Increasing the carrier frequency requires a reduction in current.
 *6: Carrier frequency can be set by the user.
 *7: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 43.
 *8: Rated input capacity is calculated with a power line voltage of $480 \mathrm{~V} \times 1.1$.

[^3]: *: Watts loss is calculated in the following conditions:
 -200 V class: Input voltage 220 V, power frequency 60 Hz , load ratio 100\%
 .400 V class: Input voltage 440 V , power frequency 60 Hz , load ratio 100%

[^4]: *1: The AC or DC reactor is not connected to the drive.

